心脏骤停发病率高,预后差[1-3]。当前我国院外心脏骤停(out-of-hospital cardiac arrest, OHCA)发病率为95.7/10万,存活出院率和神经功能预后良好率仅有1.2%和0.8%[4];成人院内心脏骤停(in-hospital cardiac arrest, IHCA)发病率为8.4‰,存活出院率和神经功能预后良好率分别为9.4%和6.7%[5]。
首次监测心律作为影响心脏骤停患者预后的关键因素之一[6-7],是指心脏骤停后心电监护仪或自动体外除颤器(automated external defibrillator, AED)连接到患者身上首次监测到的心律,包括初始可电击心律和初始不可电击心律[4, 8]。心脏骤停患者的心律在心肺复苏(cardiopulmonary resuscitation, CPR)中可能会发生转换,包括初始可电击转为不可电击心律(converted to non-shockable, CNS)和初始不可电击转为可电击心律(converted to shockable, CS)。研究发现CNS与较差的结局相关[7, 9],而CS可能会带来更好的预后[10-13]。因此,能否通过干预措施避免CNS或尽量促进CS来提高患者救治成功率是一个值得探讨的问题。本文将系统梳理心脏骤停后心律转换的发生、影响因素及对预后的影响,旨在为临床和科研人员提供该领域较为全面的认识,提示未来研究方向。
1 心脏骤停心律转换的发生率心脏骤停后心律转换的发生较为常见。39.3%~58.0%的成人OHCA可能发生CNS [7, 14-15]。成人OHCA中CS发生率略低,为3.3%~26.0%[12, 16-23];仅有一篇文章报道了成人IHCA中CS发生率,为25.7%[24](见附图 1)。儿童心律转换研究较少,儿童OHCA中CS的发生率较低,仅为2.0%左右[25-26],但儿童IHCA中CS发生率相对较高,为19.9%[27];尚缺乏成人IHCA和儿童CNS发生率的报道。此外,上述研究分析心律是否发生转换的方法主要有两种:一是通过回顾患者所有心电图进行判断[7, 11];二是根据初始不可电击心律接受除颤来判断CS的发生,可能误判[17, 28],导致发生率存在偏倚。
2 心脏骤停心律发生转换的影响因素多种因素可影响首次监测心律发生转换,但目前研究相对较少,且主要集中于OHCA。对于CNS发生的影响因素,日本一项成人OHCA的前瞻性队列研究显示,CNS发生的可能性与无血流时间和低血流时间呈正相关[15]。而关于CS发生的潜在影响因素,日本两项成人OHCA的前瞻性队列研究以及丹麦的一项成人OHCA的前瞻性队列研究发现,年龄较小、男性、无脉性电活动(pulseless electrical activity, PEA)、有目击者、心源性病因、旁观者应用AED等多种因素均与较高CS的发生率显著相关[17, 23, 29]。因此,对于CS发生可能性较高的OHCA患者,应在CPR过程中做好心律评估及除颤前的准备工作;若CS发生可能性较低,可适当减少心律评估的频率,减少胸外按压的中断以提高复苏成功率。
3 心脏骤停心律转换对患者预后的影响 3.1 初始可电击转为不可电击心律初始可电击转为不可电击心律,即CNS,往往与患者预后不良显著相关(见附表 1)。2019年和2021年日本两项成人OHCA的前瞻性队列研究发现,对于初始可电击心律的OHCA患者,相比于CNS,未转为不可电击心律组的存活率显著更高(2019年研究:24.7% vs. 7.2%,P < 0.001;2021年研究:26.6% vs. 11.0%,P < 0.05)[7, 14]。日本的另一项单中心回顾性队列研究也发现,在初始可电击心律的OHCA患者中,转为心室停搏组的预后相较于未转为心室停搏组更差[9]。研究认为,这可能与其导致全身灌注压及冠状动脉灌注压降低有关[7, 14]。因此,对于初始可电击心律的OHCA患者,应早期识别并除颤,同时尽可能避免其发生心律转换以改善患者的预后。目前尚无CNS在IHCA患者中的相关研究,亟待未来开展分析其对预后的影响。此外,探索CNS发生的潜在机制以及减少CNS发生的干预措施也是未来研究方向。
3.2 初始不可电击转为可电击心律 3.2.1 对OHCA患者预后的影响相比于持续不可电击心律,多数研究认为CS可改善OHCA患者的预后(见附表 2)[10-13, 16-17, 19, 22-23, 30-35]。2008年日本一项成人OHCA前瞻性队列研究发现在初始不可电击心律患者中,相比于未转为可电击心律,CS可以显著提高患者30 d时神经功能预后良好率(5.6% vs. 0.8%,P < 0.001)[10]。随后挪威的一项成人OHCA的前瞻性队列研究中也得出类似结论,研究发现CS组的存活出院率和自主循环恢复(return of spontaneous circulation, ROSC)率均显著高于未转为可电击心律组(7.0% vs. 2.0%,P=0.014)[11]。此后,又陆续发表了多项研究和Meta分析为CS改善成人OHCA患者的预后进一步提供了证据支持[12-13, 16, 17, 19, 22-23, 30-35]。此外,CS也能提高儿童OHCA的ROSC率、30 d存活率和30 d时神经功能预后良好率 [25]。这可能与CS帮助恢复心脏电活动有关 [33]。因此,积极探索促进CS的可能措施,是提高OHCA患者预后的可行方案。
然而,部分研究得到了不同的结论。2012年和2013年北美两项成人OHCA的前瞻性队列研究显示,与未转为可电击心律相比,CS并未显著提高患者的存活出院率(2012年研究:4.7% vs. 4.1%,P=0.08;2013年研究:2.8% vs. 2.7%,P=0.923)[28, 36]。此外,一项纳入738例成人OHCA的随机对照试验的二次分析则显示,CS组的存活出院率反而低于未转为可电击心律组(0.6% vs. 4.9%,P=0.01),该作者认为可能是CPR时为评估患者心律而频繁中断胸外按压,进而影响了患者预后[22]。
3.2.2 对IHCA患者预后的影响与OHCA不同,研究发现IHCA患者发生CS与更差的预后显著相关(见附表 2)。美国一项多中心、前瞻性成人IHCA队列研究发现,CS组患者的存活出院率均显著低于初始可电击心律组(7.0% vs. 37.2%,P < 0.05)和未转为可电击心律组(7.0% vs. 12.8%,P < 0.05);其ROSC率及神经功能预后良好率也显著低于另外两组[24]。此外,该队列研究进行的另一项儿童IHCA的研究中也得出类似结论[27]。研究认为,发生CS患者的复苏时间更长、肾上腺素使用频率更高、中断胸外按压或许是导致IHCA患者预后差潜在的原因[24, 27]。因此,对于初始不可电击心律的IHCA患者而言,持续高效的胸外按压可能更有利于提高患者的复苏成功率。
4 特定亚组中心脏骤停心律转换对患者预后的影响 4.1 心律类型亚组初始不可电击心律包括PEA及心室停搏,相比PEA,心室停搏发生CS对OHCA患者预后的改善更显著[13, 20, 30-31, 33]。北美一项成人OHCA的前瞻性队列研究发现,在心室停搏组中,发生CS可显著提高患者存活出院率(2.9% vs. 1.3%,P < 0.01),而PEA组中未能发现这一现象(3.9% vs. 7.4%,P < 0.01)[30]。研究认为,心室停搏和PEA不同电生理机制可能是导致心律转换的预后不同的潜在原因,心室停搏因心脏无电活动导致心输出量不足,故心律转换使心脏恢复电活动,进而显著改善心脏泵血功能[30];而PEA虽存在电活动,但心脏无有效机械活动,其心律转换对心脏泵血功能的改善有限[37]。上述研究提示,心律转换可能是改善心室停搏患者预后的一个潜在契机。因此,对于心室停搏的OHCA患者,应探索方法尽可能促进CS的发生以提高患者的存活率;而对于PEA的OHCA患者,在积极纠正病因的同时,应尽量减少胸外按压中断改善患者的预后。
4.2 心律转换时间亚组心脏骤停后早期发生CS与OHCA患者良好预后显著相关。研究显示,初始不可电击心律患者心律转换时间(定义为从开始CPR到首次除颤的时间)对于预后有重要影响[12, 34]。日本的两项前瞻性队列研究发现,当心律转换时间 < 20 min时,即早期发生CS与OHCA患者良好预后独立相关;而≥20 min的CS未能显著改善患者预后[12, 38]。一项儿童OHCA的研究中也发现类似结果[25]。此外,中国台湾地区一项单中心、回顾性队列研究数据显示,与晚期(>25 min)发生CS相比,早期(≤25 min)CS可显著提高成人OHCA患者出院时神经功能预后良好率(13.2% vs. 2.4%,P=0.016)。值得注意的是,该研究中晚期CS组与持续不可电击心律组相比,两组患者出院时神经功能预后并无显著差异(4.0% vs. 2.4%,P=0.211)[19],这可能与复苏的时间敏感性密切相关[12]。因此,对于初始不可电击心律的OHCA患者,应尽早并努力实现CS,以最大化改善患者预后的可能性;对于长时间未发生心律转换的患者,可以减少心律评估的频率,持续、高质量的胸外按压更能改善预后。
另外,北美一项成人OHCA的前瞻性队列研究同时按照心律类型(心室停搏,PEA)及心律转换时间(< 10 min,10~15 min,≥15 min)进行分组,研究发现在心室停搏亚组中,15 min内发生CS可显著改善预后;而在PEA亚组中,仅10 min内发生CS可改善预后,并且与心室停搏亚组相比,其相关性较弱[34]。因此,早期发生CS对于初始不可电击心律的OHCA患者,尤其是心室停搏患者可能预示着更好的预后。
4.3 心脏骤停病因亚组心源性疾病发生CS与OHCA患者更好预后相关。研究发现,心源性疾病的OHCA患者发生CS可显著提高出院时神经功能预后良好率(3.3% vs. 1.1%,P < 0.001),而非心源性疾病及创伤等其他病因组则不能获益[18]。研究认为,这可能与不同病因导致心脏骤停的机制差异有关,非心源性疾病等其他病因导致的心脏骤停主要是源于心肌灌注不良及缺氧,而非心脏电活动改变[18]。因此,对于心源性疾病的OHCA患者,应积极探索心律转换的策略促进CS发生,进而改善OHCA患者的预后;而对于其他病因的OHCA患者,减少胸外按压的中断、纠正潜在病因更为有效。
4.4 年龄亚组特定年龄OHCA患者发生CS与良好预后相关。日本的一项前瞻性队列研究根据年龄将成人OHCA患者进行分组发现,18~64岁(3.5% vs. 1.1%)和65~74岁(2.1% vs. 1.1%)两组发生CS可显著提高患者30 d时神经功能预后良好率;而75岁以上年龄组患者则未发现这一现象[38]。研究认为,这可能与高龄患者自身预后较差、心脏恢复能力弱、心律转换率较低等相关[38-39]。此外,一项儿童OHCA的队列研究也发现,7~17岁的患儿发生CS可改善预后,而 < 7岁的患儿中则无显著影响[25]。上述研究揭示了不同年龄段CS预后的差异性。
5 总结与展望在CPR过程中,患者心律可能会发生转换,从可电击心律转变为不可电击心律,或者相反。这种心律转换与多种因素有关,目前关于心脏骤停后心律转换的研究主要集中在OHCA,而对于IHCA的数据相对有限,未来的研究需要更多地关注IHCA患者的心律转换情况。且探索心律转化发生机制的研究较少,尚缺乏有效措施进行干预措施并提高患者预后,还需深入研究避免或促进心律转换的方法。CPR时需要综合考虑多方因素调整心律评估频率,并且随着CPR时间的延长,也可相应地减少心律评估的频率,以期最大程度改善患者预后。
利益冲突 所有作者声明无利益冲突
本文附录请登陆中华急诊网(www.cem.org.cn)浏览(Html格式全文)
[1] | Andersen LW, Holmberg MJ, Berg KM, et al. In-hospital cardiac arrest: a review[J]. JAMA, 2019, 321(12): 1200-1210. DOI:10.1001/jama.2019.1696 |
[2] | Nishiyama C, Kiguchi T, Okubo M, et al. Three-year trends in out-of-hospital cardiac arrest across the world: Second report from the International Liaison Committee on Resuscitation (ILCOR)[J]. Resuscitation, 2023, 186: 109757. DOI:10.1016/j.resuscitation.2023.109757 |
[3] | Kiguchi T, Okubo M, Nishiyama C, et al. Out-of-hospital cardiac arrest across the world: first report from the international liaison committee on resuscitation (ILCOR)[J]. Resuscitation, 2020, 152: 39-49. DOI:10.1016/j.resuscitation.2020.02.044 |
[4] | Zheng JQ, Lv CZ, Zheng W, et al. Incidence, process of care, and outcomes of out-of-hospital cardiac arrest in China: a prospective study of the BASIC-OHCA registry[J]. Lancet Public Health, 2023, 8(12): e923-e932. DOI:10.1016/S2468-2667(23)00173-1 |
[5] | 中国心脏骤停与心肺复苏报告编写组. 中国心脏骤停与心肺复苏报告(2022年版)概要[J]. 中国循环杂志, 2023, 38(10): 1005-1017. DOI:10.3969/j.issn.1000-3614.2023.10.002 |
[6] | Chan PS, McNally B, Tang FM, et al. Recent trends in survival from out-of-hospital cardiac arrest in the United States[J]. Circulation, 2014, 130(21): 1876-1882. DOI:10.1161/CIRCULATIONAHA.114.009711 |
[7] | Kandori K, Okada Y, Okada A, et al. Association between cardiac rhythm conversion and neurological outcome among cardiac arrest patients with initial shockable rhythm: a nationwide prospective study in JapanOpen Access[J]. Eur Heart J Acute Cardiovasc Care, 2021, 10(2): 119-126. DOI:10.1093/ehjacc/zuaa018 |
[8] | Perkins GD, Jacobs IG, Nadkarni VM, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation[J]. Circulation, 2015, 132(13): 1286-1300. DOI:10.1161/CIR.0000000000000144 |
[9] | Maeda K, Inoue A, Kuroda Y, et al. Association between converting asystole from initial shockable ECG rhythm before extracorporeal cardiopulmonary resuscitation and outcome[J]. Shock, 2021, 56(5): 701-708. DOI:10.1097/SHK.0000000000001727 |
[10] | Kajino K, Iwami T, Daya M, et al. Subsequent ventricular fibrillation and survival in out-of-hospital cardiac arrests presenting with PEA or asystole[J]. Resuscitation, 2008, 79(1): 34-40. DOI:10.1016/j.resuscitation.2008.05.017 |
[11] | Olasveengen TM, Samdal M, Steen PA, et al. Progressing from initial non-shockable rhythms to a shockable rhythm is associated with improved outcome after out-of-hospital cardiac arrest[J]. Resuscitation, 2009, 80(1): 24-29. DOI:10.1016/j.resuscitation.2008.09.003 |
[12] | Goto Y, Maeda T, Nakatsu-Goto Y. Prognostic implications of conversion from nonshockable to shockable rhythms in out-of-hospital cardiac arrest[J]. Crit Care, 2014, 18(5): 528. DOI:10.1186/s13054-014-0528-7 |
[13] | Luo SY, Zhang YS, Zhang WW, et al. Prognostic significance of spontaneous shockable rhythm conversion in adult out-of-hospital cardiac arrest patients with initial non-shockable heart rhythms: a systematic review and meta-analysis[J]. Resuscitation, 2017, 121: 1-8. DOI:10.1016/j.resuscitation.2017.09.014 |
[14] | Nakashima T, Noguchi T, Tahara Y, et al. Patients with refractory out-of-cardiac arrest and sustained ventricular fibrillation as candidates for extracorporeal cardiopulmonary resuscitation-prospective multi-center observational study[J]. Circ J, 2019, 83(5): 1011-1018. DOI:10.1253/circj.CJ-18-1257 |
[15] | Kandori K, Nakajima S, Matsuyama T, et al. Association between No-flow time, prehospital low-flow time, and conversion to nonshockable rhythm in patients with out-of-hospital cardiac arrest presenting with initial shockable rhythm: a nationwide prospective study in Japan[J]. J Am Heart Assoc, 2025, 14(5): e038725. DOI:10.1161/JAHA.124.038725 |
[16] | Fukuda T, Matsubara T, Doi K, et al. Predictors of favorable and poor prognosis in unwitnessed out-of-hospital cardiac arrest with a non-shockable initial rhythm[J]. Int J Cardiol, 2014, 176(3): 910-915. DOI:10.1016/j.ijcard.2014.08.057 |
[17] | Kitamura N, Nakada TA, Shinozaki K, et al. Subsequent shock deliveries are associated with increased favorable neurological outcomes in cardiac arrest patients who had initially non-shockable rhythms[J]. Crit Care, 2015, 19(1): 322. DOI:10.1186/s13054-015-1028-0 |
[18] | Han KS, Lee SW, Lee EJ, et al. Association between shockable rhythm conversion and outcomes in patients with out-of-hospital cardiac arrest and initial non-shockable rhythm, according to the cause of cardiac arrest[J]. Resuscitation, 2019, 142: 144-152. DOI:10.1016/j.resuscitation.2019.07.025 |
[19] | Tsai MF, Yu SH, Sie JS, et al. Prognostic value of early and late spontaneous conversion into a shockable rhythm for patients with out-of-hospital cardiac arrest[J]. Am J Emerg Med, 2022, 61: 192-198. DOI:10.1016/j.ajem.2022.09.025 |
[20] | Cournoyer A, Cossette S, Potter BJ, et al. Prognostic impact of the conversion to a shockable rhythm from a non-shockable rhythm for patients suffering from out-of-hospital cardiac arrest[J]. Resuscitation, 2019, 140: 43-49. DOI:10.1016/j.resuscitation.2019.04.044 |
[21] | Herlitz J, Svensson L, Engdahl J, et al. Characteristics and outcome in out-of-hospital cardiac arrest when patients are found in a non-shockable rhythm[J]. Resuscitation, 2008, 76(1): 31-36. DOI:10.1016/j.resuscitation.2007.06.027 |
[22] | Hallstrom A, Rea TD, Mosesso VN Jr, et al. The relationship between shocks and survival in out-of-hospital cardiac arrest patients initially found in PEA or asystole[J]. Resuscitation, 2007, 74(3): 418-426. DOI:10.1016/j.resuscitation.2007.02.003 |
[23] | Rajan S, Folke F, Hansen SM, et al. Incidence and survival outcome according to heart rhythm during resuscitation attempt in out-of-hospital cardiac arrest patients with presumed cardiac etiology[J]. Resuscitation, 2017, 114: 157-163. DOI:10.1016/j.resuscitation.2016.12.021 |
[24] | Meaney PA, Nadkarni VM, Kern KB, et al. Rhythms and outcomes of adult in-hospital cardiac arrest[J]. Crit Care Med, 2010, 38(1): 101-108. DOI:10.1097/CCM.0b013e3181b43282 |
[25] | Goto Y, Funada A, Goto Y. Subsequent shockable rhythm during out-of-hospital cardiac arrest in children with initial non-shockable rhythms: a nationwide population-based observational study[J]. J Am Heart Assoc, 2016, 5(10): e003589. DOI:10.1161/JAHA.116.003589 |
[26] | Goto Y, Funada A, Maeda T, et al. Association of subsequent treated shockable rhythm with outcomes after paediatric out-of-hospital cardiac arrests: a nationwide, population-based observational study[J]. Resusc Plus, 2021, 8: 100181. DOI:10.1016/j.resplu.2021.100181 |
[27] | Samson RA, Nadkarni VM, Meaney PA, et al. Outcomes of in-hospital ventricular fibrillation in children[J]. N Engl J Med, 2006, 354(22): 2328-2339. DOI:10.1056/NEJMoa052917 |
[28] | Mader TJ, Nathanson BH, Millay S, et al. Out-of-hospital cardiac arrest outcomes stratified by rhythm analysis[J]. Resuscitation, 2012, 83(11): 1358-1362. DOI:10.1016/j.resuscitation.2012.03.033 |
[29] | Emoto R, Nishikimi M, Shoaib M, et al. Prediction of prehospital change of the cardiac rhythm from nonshockable to shockable in out-of-hospital patients with cardiac arrest: a post hoc analysis of a nationwide, multicenter, prospective registry[J]. J Am Heart Assoc, 2022, 11(12): e025048. DOI:10.1161/JAHA.121.025048 |
[30] | Zheng RY, Luo SY, Liao JL, et al. Conversion to shockable rhythms is associated with better outcomes in out-of-hospital cardiac arrest patients with initial asystole but not in those with pulseless electrical activity[J]. Resuscitation, 2016, 107: 88-93. DOI:10.1016/j.resuscitation.2016.08.008 |
[31] | Wah W, Wai KL, Pek PP, et al. Conversion to shockable rhythms during resuscitation and survival for out-of hospital cardiac arrest[J]. Am J Emerg Med, 2017, 35(2): 206-213. DOI:10.1016/j.ajem.2016.10.042 |
[32] | Han KS, Lee SW, Lee EJ, et al. Prognostic value of the conversion to a shockable rhythm in out-of-hospital cardiac arrest patients with initial non-shockable rhythm[J]. J Clin Med, 2019, 8(5): 644. DOI:10.3390/jcm8050644 |
[33] | Ho AFW, Lee KY, Nur S, et al. Association between conversion to shockable rhythms and survival with favorable neurological outcomes for out-of-hospital cardiac arrests[J]. Prehosp Emerg Care, 2024, 28(1): 126-134. DOI:10.1080/10903127.2023.2212039 |
[34] | Zhang WW, Luo SY, Yang DY, et al. Conversion from nonshockable to shockable rhythms and out-of-hospital cardiac arrest outcomes by initial heart rhythm and rhythm conversion time[J]. Cardiol Res Pract, 2020, 2020: 3786408. DOI:10.1155/2020/3786408 |
[35] | Lovaković J, Šantek P, Mahečić LM, et al. Rhythm conversion in out-of-hospital cardiac arrest and influence on the return of spontaneous circulation at the hospital arrival: a 10-year retrospective study in Croatia[J]. Int J Emerg Med, 2024, 17(1): 157. DOI:10.1186/s12245-024-00746-7 |
[36] | Thomas AJ, Newgard CD, Fu RW, et al. Survival in out-of-hospital cardiac arrests with initial asystole or pulseless electrical activity and subsequent shockable rhythms[J]. Resuscitation, 2013, 84(9): 1261-1266. DOI:10.1016/j.resuscitation.2013.02.016 |
[37] | Mehta C, Brady W. Pulseless electrical activity in cardiac arrest: electrocardiographic presentations and management considerations based on the electrocardiogram[J]. Am J Emerg Med, 2012, 30(1): 236-239. DOI:10.1016/j.ajem.2010.08.017 |
[38] | Funada A, Goto Y, Tada H, et al. Age-specific differences in prognostic significance of rhythm conversion from initial non-shockable to shockable rhythm and subsequent shock delivery in out-of-hospital cardiac arrest[J]. Resuscitation, 2016, 108: 61-67. DOI:10.1016/j.resuscitation.2016.09.013 |
[39] | Andersen LW, Bivens MJ, Giberson T, et al. The relationship between age and outcome in out-of-hospital cardiac arrest patients[J]. Resuscitation, 2015, 94: 49-54. DOI:10.1016/j.resuscitation.2015.05.015 |