脓毒症是感染引起机体炎症反应失控导致的危及生命的器官功能障碍[1],可发展为脓毒症休克,而脓毒性休克患者并发肝损伤有较高的死亡率。急性肝损伤可发生在脓毒症的任何阶段,是影响脓毒症患者预后的独立危险因素[2]。床旁超声测定肝动脉阻力指数(hepatic artery resistance index,HARI),具有快速、方便、无创等优点,可以早期观察肝脏的血流灌注情况。有研究报道,miRNA-122a在调控炎症及肝功能方面发挥重要作用[3-4],但其对脓毒症相关肝损伤的诊断效能及预后价值尚缺乏相关研究。本研究通过检测脓毒症休克患者HARI、血清miRNA-122a的表达量,分析其对脓毒症休克合并肝损伤的早期诊断及预后评估的临床价值。
1 资料与方法 1.1 一般资料选择2016年12月至2019年02月沧州市中心医院EICU收治的176例脓毒症休克患者作为研究对象。
1.1.1 入选标准所有入组患者均符合脓毒症与脓毒症休克国际处理指南(2016版)的诊断标准[1]。病例资料完整。脓毒症休克合并肝损伤组患者同时符合脓毒症相关肝损伤(sepsis related liver injury,SRLI)诊断标准[5]。所有入组患者年龄18~80岁。
脓毒症与脓毒症休克的诊断标准[1]:脓毒症为感染后器官序贯衰竭评分(SOFA)≥2分;脓毒症休克是指脓毒症患者经充分液体复苏仍存在持续性低血压,需要血管活性药物维持平均动脉压(MAP)≥65 mmHg(1 mmHG=0.133 kPa),血乳酸水平>2 mmol/L。
脓毒症相关肝损伤(sepsis related liver injury,SRLI)诊断标准[5]:血清丙氨酸氨基转移酶(ALT)或结合胆红素(DBil)升高至正常值上线(ULN) 2倍以上;或血清天冬氨酸氨基转移酶(AST)、碱性磷酸酶(ALP)和总胆红素(TB)同时升高,且其中至少有1项升高至ULN 2倍以上。ALT升高定义为 > 80 U/L,TB升高定义为 > 34.1 μmol/L。肝损伤分级:轻度组:1<ALT/ALTULN<3或1<TB/TBULN<2;中度组:3<ALT/ALTULN > <5或2<TB/TBULN<3;重度组:ALT/ALTULN > 5或TB/TBULN > 3。
1.1.2 排除标准既往有肝脏肿瘤、慢性肝脏疾病、梗阻性黄疸、慢性肝功能障碍急性发作入住EICU者;中毒或药物性肝损伤等非脓毒症原因引起的肝损伤者;年龄<18岁或 > 80岁;住院资料完整性不能满足研究要求者。
1.1.3 伦理学本研究符合伦理学标准,并经沧州市中心医院伦理委员会批准,所有检查和治疗均获得过患者家属的知情同意。
1.1.4病例分组根据是否发生肝损伤,分为无肝损伤组(90例)和肝损伤组(86例);脓毒症休克合并肝损伤患者再按肝损伤严重程度分为轻度肝损伤组(20例)、中度肝损伤组(25例)、重度肝损伤组(41例);脓毒症休克合并肝损伤组患者根据28d转归分为生存组(26例)和死亡组(60例)。选择健康体检者40例作为对照组。
1.2 方法1.2.1采用彩色多普勒超声测定肝动脉阻力指数(HARI)采用飞利浦ELETE彩超(飞利浦公司,荷兰)诊断系统,3~5 MHz探头进行检查,受检者禁食8h以上,仰卧位,经剑突下横向扫查下腔静脉,在下腔静脉前方检测门静脉,在该处门静脉腹侧寻找肝动脉并检测,采样容积接近血管内径,声束与血流方向的夹角小于60°,检测肝动脉阻力指数(HARI)。选取统一切面和测量方式,各项参数均取3个以上心动周期的平均值。
1.2.2采用反转录-聚合酶链反应(RT-PCR)测定血清miRNA-122a表达量患者入院当天(治疗前)采集患者肘静脉血5 mL,离心(3 000 r/min)10 min,取血浆于-80℃保存,待测miRNA-122a、相对表达量。在miRBase上查找目的基因序列,由美国Invitrogen公司设计合成引物,提取血清miRNAs,合成cDNA。以U6作为内参,RT-PCR反应在9700型基因扩增仪中进行,扩增miRNA。RT-PCR反应条件为:95℃,10 min;40个PCR循环(95℃,10s;60℃,60s)。采用2-ΔΔCt相对定量法计算miRNA-122a相对表达量。
1.3 观察指标记录患者入EICU当日的一般资料,包括年龄、性别、感染部位、乳酸(Lac)、氧合指数OI(PaO2/FiO2)、血常规、生化指标、PCT、机械通气、APACHE Ⅱ评分、SOFA评分等,记录28 d预后。记录患者入EICU当时的肝动脉阻力指数(HARI)、血清miRNA-122a表达量。
1.4 统计学方法使用SPSS 23.0软件处理数据,计量资料先行正态检验,符合正态分布的计量资料采用均数±标准差(Mean±SD)表示,两组间比较采用独立样本t检验;方差齐者多组间比较采用单因素方差分析;不符合正态分布者以中位数(P25,P75)表示,两组间比较用Mann-Whitney U检验,多组间比较用Kruskal-Wallis H检验。计数资料采用χ2检验。绘制受试者工作特征曲线(ROC),评估HARI和血清miRNA-122a对脓毒症休克合并肝损伤的诊断价值。采用二元Logistic回归分析影响脓毒症休克合并肝损伤患者预后的危险因素。以P<0.05为差异有统计学意义,P<0.01为差异有计学意义。
2 结果 2.1 患者一般资料比较脓毒症休克无肝损伤组患者与肝损伤组患者间性别、年龄、感染部位等差异均无统计学意义(均P>0.05),说明基线资料均衡,具有可比性,见(表 1)。但是,肝损伤组患者的APACHE Ⅱ评分、SOFA评分、PCT、Lac、28 d病死率显著高于无肝损伤组,差异有显著统计学意义(均P<0.01),且随肝损伤程度的加重呈递增趋势,各组间比较差异有统计学意义(均P<0.01),见表 1, 2。
指标 | 对照组 (n=40) |
无肝损伤组 (n=90) |
肝损伤组 (n=86) |
x2/Z/F/H//t/t'值 | P值 |
年龄(岁) | 58.9±7.8 | 59.8±12.5 | 64.9±11.3 | 1.261 | 0.313 |
男性(例,%) | 20(50) | 56(57.77) | 48(55.81) | 1.475 | 0.252 |
HR(次/min) | 65.2±7.6 | 125.5±15.9 | 126.7±15.6 | 0.038 | 0.874 |
MAP(mmHg) | 75.6±10.5 | 61.54±9.52 | 61.48±8.53 | 0.092 | 0.793 |
CVP(mmHg) | 7.28±4.23 | 7.36±4.87 | 0.745 | 0.638 | |
NE(μg/kg/min) | 0.79±0.15 | 0.81±0.26 | 1.236 | 0.351 | |
Lac(mmol/L) | 3.92±1.54 | 3.87±1.85 | 0.367 | 0.574 | |
PaO2/FiO2(mmHg) | 129.50±25.36 | 127.64±27.59 | 1.482 | 0.245 | |
PCT(ng/mL) | 0.15±0.02 | 9.47(6.84, 13.30) | 15.47(9.84, 33.4) | 55.637 | <0.001 |
机械通气(例,%) | 117(69.64) | 61(70.93) | 2.679 | 0.192 | |
感染部位(例,%) | 1.264 | 0.337 | |||
肺及胸腔 | 18(20.00) | 18(20.93) | |||
腹腔 | 20(22.22) | 21(24.41) | |||
泌尿系 | 28(31.11) | 28(32.55) | |||
导管 | 5(5.55) | 5(5.81) | |||
其他部位a | 19(21.12) | 14(16.3) | |||
APACHE Ⅱ评分 | 21.72±3.65 | 25.62±3.37 | 42.51 | <0.001 | |
SOFA评分 | 7.0(5.0, 11.0) | 14.0(12.0, 17.0) | 37.98 | <0.001 | |
28 d病死率n (%) | 87(51.78) | 60(69.76) | 32.69 | <0.001 | |
注: a指除肺、胸腔、腹腔、肝胆系统、导管、泌尿系以外其他部位感染,或者感染部位不明;HR,心率;MAP,平均动脉压;CVP,中心静脉压;NE,去甲肾上腺素;Lac,乳酸;PCT,降钙素原;PaO2/FiO2,氧合指数;APACHE Ⅱ,急性生理与慢性健康评分;SOFA,序贯器官衰竭评分 |
指标 | 轻度肝损伤组 (n=20) |
中度肝损伤组 (n=25) |
重度肝损伤组 (n=41) |
F/H/x2值 | P值 |
APACHE Ⅱ评分 | 16.74±3.51 | 22.65±3.36c | 26.72±3.62cd | 35.69 | <0.001 |
SOFA评分 | 5.0(5.0, 11.0) | 9.0(5.0, 11.0)c | 15.0(12.0, 18.0)cd | 42.37 | <0.001 |
28 d病死率n(%) | 11(45) | 14(56)c | 35(85.36)cd | 9.446 | 0.009 |
PCT(ng/mL) | 9.52(6.97, 13.46) | 14.39(9.86, 26.57)c | 18.45(11.24, 39.43)cd | 30.54 | <0.001 |
注:与轻度肝损伤组比较,cP<0.01;与中度肝损伤组比较,dP<0.01 |
与对照组比较,脓毒症休克无肝损组、脓毒症休克合并肝损伤的HARI、血清miRNA-122a表达量明显升高,差异有显著统计学意义(P<0.01),见表 3。脓毒症休克无肝损伤组与轻度肝损伤组比较,HARI差异无统计学意义(P > 0.05),而血清miRNA-122a差异有统计学意义(P<0.01)。随肝损伤严重程度加重,HARI、血清miRNA-122a呈递增趋势,重度肝损伤组显著高于轻度和中度肝损伤组,差异有显著统计学意义(P<0.01),见表 4。HARI、血清miRNA-122a诊断脓毒症休克合并肝损伤的AUC分别为:0.872[95% CI=(0.813, 0.919)]、0.796 [95% CI=(0.728, 0.854)]。当HARI最佳临界值为0.738时,其诊断脓毒症休克合并肝损伤的敏感度为77.65%,特异度为83.53%;当miRNA-122a表达量最佳临界值为2.80时,其诊断脓毒症相关肝损伤的敏感度为71.76%,特异度为75.29%;当HARI联合miRNA-122a诊断脓毒症休克合并肝损伤的AUC为0.927 [95% CI=(0.876, 0.961)],最佳临界值为0.276时,其诊断脓毒症休克合并肝损伤的敏感度为91.76%,特异度为85.29%。见图 1。
指标 | 对照组 (n=40) |
脓毒症休克无肝损伤组(n=90) | 脓毒症休克合并肝损伤组(n=86) | F值 | P值 |
miRNA-122 | 1.03±0.02 | 2.51±0.45a | 2.83±0.56ab | 52.736 | <0.001 |
HARI | 0.657±0.042 | 0.708±0.035a | 0.730±0.016ab | 10.454 | <0.001 |
注:与对照组比较,aP<0.01;与脓毒症休克无肝损伤组比较,bP<0.01 |
指标 | 对照组 (n=40) |
脓毒症休克无肝损伤组(n=90) | 轻度肝损伤组 (n=20) |
中度肝损伤组 (n=25) |
重度肝损伤组 (n=41) |
F值 | P值 |
miRNA-122a | 1.03±0.02 | 2.51±0.45a | 2.57±0.34ab | 2.84±0.56abc | 3.54±0.58abcd | 18.236 | <0.001 |
HARI | 0.657±0.042 | 0.708±0.035a | 0.714±0.037a | 0.726±0.024abc | 0.754±0.046abcd | 25.379 | <0.001 |
注:与健康对照组比较,aP<0.01;与脓毒症休克无肝损伤组比较,bP<0.01;与轻度肝损伤组比较,cP<0.01;与中度肝损伤组比较,dP<0.01 |
![]() |
图 1 HARI、血清miRNA-122a诊断脓毒症休克合并肝损伤的ROC曲线 Fig 1 ROC curve of HARI and serum miRNA-122a in diagnosis of septic shock with liver injury |
|
单因素分析结果显示,存活组和死亡组患者年龄、性别、WBC、住EICU时间、机械通气时间、肝损伤持续时间等比较,差异无统计学意义(均P > 0.05)。与存活组比较,28 d死亡组患者入EICU时的肝损伤严重程度、HARI、APACHE Ⅱ评分、SOFA评分、PCT、Lac、HARI、血清miRNA-122a的表达量显著升高,差异有统计学意义(均P<0.05)。见表 5。
变量 | 存活组(n=26) | 死亡组(n=60) | x2/Z/t/t'值 | P值 |
年龄(岁) | 57.9±9.8 | 65.7±12.6 | 1.236 | 0.352 |
男性(例,%) | 13(50) | 30(50) | 0.328 | 0.573 |
APACHE Ⅱ评分 | 14.85±6.53 | 28.45±7.39 | 52.746 | <0.001 |
SOFA评分 | 7.0(5.0, 10.0) | 15.0(12.0, 18.0) | 63.249 | <0.001 |
住EICU时间(d) | 5(2, 8) | 12(6, 25) | 0.002 | 0.975 |
机械通气时间(d) | 4(3, 9) | 7(5, 11) | 1.457 | 0.298 |
肝损伤持续时间(d) | 6(3, 9) | 8(5, 14) | 2.659 | 0.175 |
WBC(×109/L) | 20.58±3.66 | 23.78±5.48 | 0.376 | 0.549 |
Lac(mmol/L) | 3.2(2.5, 7.8) | 4.7(3.1, 15.4) | 37.58 | <0.001 |
PCT(ng/mL) | 7.03(5.26, 15.63) | 22.37(17.68, 45.92) | 48.07 | <0.001 |
肝损伤严重程度 (轻度/中度/重度) |
9/11/6 | 11/14/35 | 9.76 | 0.002 |
HARI | 0.717±0.016 | 0.732±0.023 | 0.695 | 0.046 |
miRNA-122a | 2.51±0.52 | 3.27±0.36 | 33.29 | <0.001 |
肝损伤严重程度、APACHE Ⅱ评分、SOFA评分、HARI、miRNA-122a是影响脓毒症休克合并肝损伤患者预后的独立危险因素,见表 6。
影响因素 | B | SE | Wald | P值 | OR | 95%CI |
肝损伤严重程度 | 1.713 | 0.785 | 1.927 | <0.01 | 5.544 | (2.024, 9.631) |
APACHE Ⅱ评分 | 1.509 | 0.762 | 3.967 | 0.016 | 4.521 | (1.965, 7.323) |
SOFA评分 | 1.546 | 0.381 | 7.779 | 0.001 | 4.692 | (2.538, 8.633) |
HARI | 1.024 | 0.047 | 4.376 | 0.008 | 2.784 | (1.259, 5.704) |
miRNA-122a | 1.036 | 0.487 | 4.525 | 0.023 | 2.815 | (1.082, 5.926) |
脓毒症休克为脓毒症的一个亚组,具有较高的死亡率,是ICU患者主要死亡原因之一[6],急性肝损伤可发生在脓毒症休克的任何阶段,是预测死亡的一项重要的预警指标。因此,早期诊断脓毒症休克合并肝损伤,及时给予有效的预防及治疗措施对脓毒症休克患者尤为要要。脓毒症相关肝损伤的机制众多[7-9],目前研究认为有以下几项:①肝脏微循环功能障碍,肝脏虽有门静脉和肝动脉双重血液供应,但脓毒症时肝动脉、门静脉血流量均减少。同时脓毒症时,内毒素导致缩血管和扩血管比例失衡、肝窦内皮细胞损伤、白细胞聚集黏附于窦后静脉壁等,导致肝窦内血管阻力的增加,均导致肝脏微循环功能障碍[10]。②肝脏能量代谢障碍,脓毒症时肝细胞线粒体膜上的主要ATP离子通道活性均降低,导致膜的流动性及通透性改变,同时线粒体结构和功能受损,引起肝细胞能量代谢障碍[11]。③炎性因子、介质过度释放入血,形成瀑布式反应,机体免疫抑制,感染失控,导致肝脏甚至全身多器官功能损害。同时炎性介质促进氧自由基释放,引发脂质过氧化,导致肝损伤[12]。④血小板活化因子(platelet activating factor,PAF)的作用,脓毒症时PAF释放增多,促进血小板聚集、活化,在肝脏微血栓形成;同时PAF通过NF-ҡB激活内毒素,加重肝脏[13]。⑤肠道细菌/内毒素移位,随血液循环到达肝脏,导致肝损害[14]。
血清丙氨酸氨基转移酶(ALT)、血清天冬氨酸氨基转移酶(AST)和总胆红素(TB)等是目前诊断脓毒症相关肝损伤(sepsis related liver injury,SRLI)最常用的检测指标,但敏感性、特异性欠佳,且受诸多因素影响。而床旁超声测定肝动脉阻力指数(HARI),具有快速、方便、无创等优点,可以早期观察肝脏的血流灌注情况。国内外很多专家及学者对急性病毒性肝炎或急性酒精性肝炎患者的肝动脉阻力指数进行了研究,然而关于脓毒症休克相关的肝动脉阻力指数方面的信息却很少。因此,本研究探讨脓毒症休克合并肝损伤患者肝动脉阻力指数与肝损伤严重程度及临床预后的关系。
正常人肝脏的血供75 %来自门静脉, 25 %来自肝动脉。门静脉与肝动脉间存在着缓冲效应,即当肝动脉血流量减少时,门静脉血流量增加,而门静脉血流量减少时,肝动脉血流量增加。肝动脉阻力指数(hepatic artery resistance index,HARI)是指肝动脉收缩期峰值流速PSV -舒张末期流速(EDV)与PSV之比,反映动脉收缩期与舒张期血流速度的变化梯度, 不受血管形态及取样角度影响。HARI降低提示动脉壁弹性减低, 血流近端存在梗阻或远端血流的阻力下降。HARI增高主要见于胆管内压力增高并扩张时, 由于胆道梗阻, 胆汁淤积而致的毛细胆管周围肝细胞炎性水肿。本研究显示,脓毒症休克患者肝损伤组HARI显著高于无肝损伤组,并随肝损伤程度加重呈递增趋势,对脓毒症休克肝损伤的早期诊断具有较高的临床应用价值。二元Logistic回归分析发现,HARI是影响脓毒症休克合并肝损伤患者预后的独立危险因素。结果表明脓毒症休克合并肝损伤与HARI有密切的关系,其原因为:脓毒症休克时,血压降低,有效循环血容量锐减,脏器灌注不足,肝动脉血流速降低,HARI增加,此时机体为保证重要脏器灌注,胃肠道血管收缩,导致门静脉血流速度降低。另一方面,脓毒症休克患者,通常使用血管活性药,收缩血管,提升血压,从而导致肝脏血管阻力增大,血流量减少。
miRNA-122作为新药肝细胞毒性早期评价标志物具有潜在应用价值,miRNA-122a通过调控靶基因CAT-1、Cycling G1参与蛋白质的合成,进而参与肝细胞的损伤。miRNA-122a能抑制抗凋亡基Bcl-xL、Bcl-2表达,导致大量淋巴细胞凋亡,免疫功能抑制,脓毒症后期感染难以控制。血清miRNA-122a表达量的升高,可以作为脓毒症诊断的特异性标志物, 还能够对脓毒症患者的疾病严重程度及死亡率做出预警[3]。在急性呼吸窘迫损伤综合征患者中,血清miRNA-122a表达量的升高与死亡率和急性肝损伤有相关性。本研究显示,脓毒症休克合并肝损伤组患者血清miRNA-122a表达水平显著高于脓毒症休克无肝损伤组,并随肝损伤程度加重呈递增趋势;脓毒症休克合并肝损伤死亡组患者血清miRNA-122a表达水平显著高于存活组,表明血清miRNA-122a可用于脓毒症休克合并肝损伤的早期诊断、严重程度和预后评估,这与国内外研究报道结果一致。
[1] | Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. DOI:10.1001/jama.2016.0287 |
[2] | 姜丽静, 倪金迪, 孙英杰, 等. 脓毒症患者发生急性肝功能障碍诱因的多因素回归分析[J]. 肝脏, 2016, 21(4): 286-289. DOI:10.14000/j.cnki.issn.1008-1704.2016.04.012 |
[3] | Rahmel T, Schäfer ST, Frey UH, et al. Increased circulating microRNA-122 is a biomarker for discrimination and risk stratification in patients defined by sepsis-3 criteria[J]. Plos One, 2018, 13(5): e0197637. DOI:10.1371/journal.pone.0197637 |
[4] | Akamatsu S, Hayes CN, Tsuge M, et al. Differences in serum microRNA profiles in hepatitis B and C virus infection[J]. J Infect, 2015, 70(3): 273-287. DOI:10.1016/j.jinf.2014.10.017 |
[5] | Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis[J]. Chest, 1992, 101(6): 1644-1655. DOI:10.1378/chest.101.6.1644 |
[6] | Lorente L, Martín MM, Abreu-González P, et al. Prognostic value of malondialdehyde serum levels in severe sepsis:A multicenter study[J]. Plos One, 2013, 8(1): e53741. DOI:10.1371/journal.pone.0053741 |
[7] | 吴田田, 姚咏明. 提高脓毒症中自噬对重要脏器保护效应的认识[J]. 中华急诊医学杂志, 2017, 26(2): 135-138. DOI:10.3760/cma.j.issn.1671-0282.2017.02.001 |
[8] | 熊熙, 任玉倩, 王春霞, 等. 甲基强的松龙激活肝细胞自噬改善脂多糖诱导的肝损伤[J]. 中华急诊医学杂志, 2017, 26(12): 1407-1412. DOI:10.3760/cma.j.issn.1671-0282.2017.12.015 |
[9] | 曹瑛, 栾正刚, 王亮, 等. 脓毒症相关肝损伤临床特点及预后分析[J]. 中国实用内科杂志, 2019, 39(2): 163-167. DOI:10.19538/j.nk2019020502 |
[10] | Ezzelarab MB, Ekser B, Azimzadeh A, et al. Systemic inflammation in xenograft recipients precedes activation of coagulation[J]. Xeno Trans, 2015, 22(1): 32-47. DOI:10.1111/xen.12133 |
[11] | Lorente L, Martín MM, Abreu-González P, et al. Prognostic value of malondialdehyde serum levels in severe sepsis:A multicenter study[J]. Plos One, 2013, 8(1): e53741. DOI:10.1371/journal.pone.0053741 |
[12] | Kim SJ, Park JS, Lee DW, et al. Trichostatin A protects liver against septic injury through inhibiting toll-like receptor signaling[J]. Biomol Ther, 2016, 24(4): 387-394. DOI:10.4062/biomolther.2015.176 |
[13] | Agrawal V, Jaiswal MK, Ilievski V, et al. Platelet-activating factor:a role in preterm delivery and an essential interaction with Toll-like receptor signaling in mice[J]. Biol Reprod, 2014, 91(5): 119. DOI:10.1095/biolreprod.113.116012 |
[14] | 罗山铖. 缺血性脑卒中患者肝损害与肠源性内毒素血症的相关性[J]. 中国实用神经疾病杂志, 2015, 18(19): 25-26. DOI:10.3969/j.issn.1673-5110.2015.19.015 |