2 中国医学科学院北京协和医院急诊科,北京 100730;
3 迈瑞生物医疗电子股份有限公司,深圳 518057
2 Department of emergency, Peking Union Medical College Hospital of Chinese Academy of Medical Sciences, Peking 100730, China;
3 Institute of Life Monitoring, Mindray Corporation, Shenzhen 518057, China
高质量心肺复苏(cardiopulmonary resuscitation,CPR)是提高心脏骤停(cardiac arrest,CA)患者生存率的关键[1-5]。施救者在达到指南所界定的主观努力指标(如按压频率100~120次/min、按压幅度≥5 cm、保证胸廓充分回弹、尽量减少按压中断时间、避免过度通气等)的基础上[6-7],可依据客观生理参数(如冠脉灌注压、动脉舒张压、呼气末二氧化碳分压(partial pressure of end-tidal carbon dioxide (PETCO2)、脉搏血氧波形参数等)判断心肺复苏术的质量,初步评估患者预后[8-12]。其中脉搏血氧波形参数源于脉搏血氧技术,能够实时反映外周循环灌注状态[9, 13-14]。
心肺复苏质量指数(cardiopulmonary resuscitation quality index,CQI)基于脉搏血氧波形参数,体现脉搏血氧波形曲线下面积。本课题组前期通过多中心临床研究(ClinicalTrails.org:NCT01987245)表明,CQI通过对外周循环灌注状态的实时监测,能够在CPR过程中判断胸外按压质量,并可辅助评估患者预后,其对胸外按压质量判断和预后评估能力非劣效于PETCO2。由于同时收集PETCO2参数,该临床试验的研究对象须建立高级气道。CQI对未建立高级气道的患者预后判断尚无大规模临床试验支持。本研究目的旨在探究高级气道建立是否影响CQI在CPR过程中对于患者预后的判断价值。
1 资料与方法 1.1 一般资料本研究对象为2015年10月至2018年2月来自共12家三甲医院急诊科收治的实施心肺复苏的成人患者。根据是否建立高级气道分为高级气道组和非高级气道组,各组再根据是否恢复自主循环(return of spontaneously circulation,ROSC)分为ROSC组和非ROSC组。纳入标准:CA需行CPR患者; 年龄≥14周岁; 同时有CQI和PETCO2监测记录。排除标准:拒绝进行心肺复苏(Do Not Attempt Resuscitation, DNAR)者; 孕妇; 明显胸部畸形者; 灰指甲、染甲者; 未能及时连接监护仪记录数据者。试验操作不干扰临床救治过程。
1.2 研究方法本研究为多中心前瞻性描述性研究,无特殊干预措施。ClinicalTrails.org批准号:NCT03754946;北京协和医院伦理委员会批准号:S-701。
1.2.1 数据采集记录患者一般资料; 主要预后指标为ROSC。采用T8监护仪(迈瑞生物医疗电子股份有限公司, 中国深圳)及专用一次性脉搏血氧探头进行CQI采集,同时采集心电图、PETCO2; 导出并备份数据后使用基于MATLAB 2012a专用软件进行CQI、PETCO2提取并分析。本研究中CQI和PETCO2为患者按压状态下的平均值。
1.2.2 ROSC判断标准规律心电波形,动脉血压增高且出现规律血压波形,PETCO2突然增高并达到35~40 mmHg(1mmHg=0.133kPa)以上。本研究将恢复自主循环且稳定20 min以上者归为ROSC组,其余患者归为非ROSC组。
1.2.3 心肺复苏实施方法按照2015年国际心肺复苏指南进行救治。高级气道组进行PETCO2监测,人工通气频率10次/min,呼吸机辅助通气潮气量6~8 mL/kg; 非高级气道组使用简易呼吸器辅助通气以见到胸廓起伏为准,按压通气比30:2。
1.2.4 终止复苏标准① ROSC者; ②经积极救治30 min后仍无ROSC者; ③经治医师依据病情与家属交流后决定停止复苏。
1.3 统计学方法所得数据均录入计算机采用SPSS17.0、MedCal软件包进行数据处理。定量资料进行正态性检验(K-S法)。符合正态分布的计量资料采用均数±标准差(Mean±SD)表示,非正态分布的资料用中位数、25分位数、75分位数表示。正态分布的计量资料采用独立样本t检验(其中方差不齐者采用t'检验)或方差分析(F); 非正态分布计量资料采用秩和检验(Z); 定性资料采用χ2检验。以P<0.05为差异有统计学意义。针对ROSC绘制受试者工作特征曲线(receiver operating characteristic curve, ROC曲线),计算ROC曲线下面积,并通过计算约登指数(Youden’s index =灵敏度+特异度-1)寻找最佳截断点,比较各指标对判断CPR预后的ROC曲线下面积,并计算其阳性和阴性预测值。
1.4 质控方法参加临床试验的各中心均采用标准操作规程,以保证临床试验的质量控制和质量保证系统的实施。各中心按统一的临床试验方案,同期开始试验,并尽可能同期结束试验。临床试验中所有观察到的结果和异常发现,均及时认真核实、记录,以保证数据的可靠性。临床试验中各种检查项目所使用的各种仪器、设备等,均有严格的质量标准,并确保是在正常状态下工作。各中心负责人完整、详细、准确地填写病例报告表,并将病例报告表和数据定期汇总。指定监查员定期对各中心进行系统监查。
2 结果 2.1 一般资料376例患者中,高级气道组281例,非高级气道组95例,其流行病学资料见表 1。
一般资料 | 高级气道组(n=281) | 非高级气道组(n=95) | F/χ2值 | P值 | ||
ROSC组 (n=90) |
非ROSC组(n=191) | ROSC组 (n=27) |
非ROSC组(n=68) | |||
年龄 | 65.7±15.0 | 63.5±18.0 | 66.0±17.1 | 62.7±17.7 | 0.601 | 0.615 |
性别 | ||||||
男 | 61(0.68) | 135(0.71) | 17(0.63) | 50(0.74) | 0.238 | 0.625 |
女 | 29(0.32) | 56(0.29) | 10(0.37) | 18(0.26) | 0.494 | 0.482 |
病因 | ||||||
心源性 | 36(0.40) | 95(0.50) | 12(0.44) | 38(0.56) | 0.004 | 0.951 |
非心源性 | 54(0.60) | 96(0.50) | 15(0.56) | 30(0.44) | 0.045 | 0.832 |
初始心律 | ||||||
室颤 | 14(0.16) | 32(0.17) | 6(0.22) | 6(0.09) | 3.350 | 0.067 |
无脉室速 | 0(0) | 0(0) | 0(0) | 0(0) | - | - |
无脉性电活动 | 0(0) | 3(0.02) | 0(0) | 1(0.01) | - | - |
心脏停搏 | 76(0.84) | 156(0.81) | 21(0.78) | 61(0.90) | 0.669 | 0.413 |
基础疾病 | ||||||
冠心病 | 19(0.21) | 45(0.24) | 9(0.33) | 13(0.19) | 2.757 | 0.097 |
高血压 | 32(0.36) | 55(0.29) | 8(0.30) | 19(0.28) | 0.165 | 0.684 |
心肌病 | 3(0.03) | 4(0.02) | 0(0) | 0(0) | - | - |
慢阻肺 | 5(0.06) | 12(0.06) | 1(0.04) | 3(0.04) | - | - |
支气管哮喘 | 1(0.01) | 5(0.03) | 0(0) | 1(0.01) | - | - |
脑血管疾病 | 9(0.10) | 17(0.09) | 7(0.26) | 6(0.09) | 2.598 | 0.107 |
糖尿病 | 18(0.20) | 34(0.18) | 6(0.22) | 10(0.15) | 0.355 | 0.552 |
其他 | 38(0.42) | 27(0.14) | 16(0.59) | 9(0.13) | 0.913 | 0.339 |
无 | 22(0.24) | 62(0.32) | 4(0.15) | 26(0.38) | 2.511 | 0.113 |
高级气道组中CQI和PETCO2以及非高级气道组中CQI在ROSC组和非ROSC组间均有统计学意义(P <0.05)(表 2)。
参数 | 组别 | ROSC组 | 非ROSC组 | t/t’/Z值 | P值 |
CQI | 高级气道组 | 63.3±20.7 | 49.7±23.8 | 4.637 | <0.001a |
PETCO2(mmHg) | 19.8(11.4, 31.6) | 8.8(3.3, 15.8) | 2.978 | <0.001a | |
CQI | 非高级气道组 | 63.0±21.8 | 42.2±29.0 | 3.810 | <0.001a |
注:两组间参数差异有统计学意义,aP<0.05 |
将高级气道组CQI和PETCO2针对复苏预后绘制ROC曲线,计算AUC,并寻找最佳截断点,计算其灵敏度、特异度、阳性预测值和阴性预测值(表 3)。两者ROC曲线下面积间差异无统计学意义(Z = 0.633, P= 0.527)。
参数 | 最佳截断点 | AUC | 灵敏度 | 特异度 | 阳性预测值 | 阴性预测值 |
CQI | 60.4 | 0.679 | 0.700 | 0.691 | 0.694 | 0.697 |
PETCO2(mmHg) | 16.3 | 0.709 | 0.611 | 0.770 | 0.442 | 0.372 |
将高级气道组与非高级气道组CQI针对复苏预后绘制ROC曲线,计算AUC,并寻找最佳截断点,计算其灵敏度、特异度、阳性预测值和阴性预测值(表 4)。两者ROC曲线下面积间差异无统计学意义(Z = 0.519, P = 0.604)。
参数 | 最佳截断点 | AUC | 灵敏度 | 特异度 | 阳性预测值 | 阴性预测值 |
CQI (高级气道) | 60.4 | 0.679 | 0.700 | 0.691 | 0.694 | 0.697 |
CQI (非高级气道) | 61.1 | 0.713 | 0.741 | 0.676 | 0.522 | 0.556 |
本研究结果提示,高级气道组CQI、PETCO2和非高级气道组CQI在复苏成功患者的胸外按压阶段段均明显高于复苏失败者。在胸外按压状态下高级气道组CQI不低于60.4,PETCO2不低于16.3 mmHg; 非高级气道组CQI不低于61.1,提示复苏成功可能性大。PETCO2阈值与2010年ERC心肺复苏指南一致[15]。
CPR按压深度和频率将会引起每搏心输出量的变化,而每搏心输出量的变化则间接体现为血氧脉搏波的单次脉搏信号的面积变化; 部分滞留血液和手指的骨骼、组织等吸收量固定的成分,则间接体现为血氧脉搏波的单次脉搏信号的直流成分。因此CQI间接反应心脏每搏输出量,其数值越大表明外周循环灌注越佳,间接表明胸外按压的质量越好。
而PETCO2是呼气末期呼出气中二氧化碳的浓度,表示为二氧化碳分压,其水平反映组织代谢、组织灌注和肺灌注及肺泡通气。正常持续通气的状态下,PETCO2反映循环状态和机体氧代谢程度。研究表明,PETCO2反应循环状态的能力在心肺复苏过程中能够体现胸外按压质量,与心排血量和冠脉灌注压相关[16],并可评估患者预后[17-18]。2015年AHA心肺复苏指南提出,20 min内若PETCO2持续低于10 mmHg,患者往往不能获得良好预后[19]。
然而,PETCO2有其内在缺陷:肺基础疾病患者,其病理性死腔的存在降低PETCO2水平,而这一因素独立于循环状态之外[20]。由于PETCO2绝对值受呼吸功能影响,在评价心搏骤停患者预后时有其局限性。持续通气状态下,CPR过程中CO2与心输出量呈良好相关,但这种相关性在应用碳酸氢钠时会出现短暂改变[21]。碳酸氢根转变为水和CO2,使CO2向肺的输送突然增加。因此碳酸氢钠治疗后的短暂PETCO2升高并不代表CPR质量增高或ROSC。CPR时PETCO2与CPP的相关性受血管升压药治疗的影响[22-23]。CPR时血管升压药增加心脏后负荷,从而增加血压和心肌血流灌注,但却降低心输出量。因此血管升压药治疗后的PETCO2小幅降低不代表CPR质量下降。
本研究中,高级气道组CQI和PETCO2针对预后所绘制的ROC曲线下面积差异无统计学意义,表明脉搏血氧波形参数可作为判断心肺复苏患者预后的指标,其价值非劣效于指南推荐的PETCO2,与前期结果一致。
本研究中,高级气道组和非高级气道组CQI针对预后所绘制的ROC曲线下面积差异无统计学意义。在心肺复苏过程中,建立高级气道的目的在于保证足够的通气而避免过度通气,同时封闭气道避免相关并发症[8]。在尽量减少按压中断时间的基础上,高级气道的建立并不影响人工循环的建立,故高级气道的建立并不影响CQI对于心肺复苏患者预后的评估能力。
综上,本研究结果表明,心肺复苏过程中CQI能够辅助评估患者预后,其对预后评估的能力不受高级气道建立的影响,其效果非劣效于PETCO2。
[1] | Singal RK, Singal D, Bednarczyk J, et al. Current and future status of extracorporeal cardiopulmonary resuscitation for in-hospital cardiac arrest[J]. Can J Cardiol, 2017, 33(1): 51-60. DOI:10.1016/j.cjca.2016.10.024 |
[2] | Travers AH, Perkins GD, Berg RA, et al. Part 3: Adult Basic Life Support and Automated External Defibrillation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations[J]. Circulation, 2015, 132(16 Suppl 1): S51-83. DOI:10.1161/CIR.0000000000000272 |
[3] | Krishna CK, Showkat HI, Taktani M, et al. Out of hospital cardiac arrest resuscitation outcome in North India — CARO study[J]. World J Emerg Med, 2017, 8(3): 200-205. DOI:10.5847/wjem.j.1920–8642.2017.03.007 |
[4] | Skulec R, Callerova J, Knor J, et al. Case of morphine-induced ventricular fibrillation[J]. World J Emerg Med, 2017, 8(4): 310-312. DOI:10.5847/wjem.j.1920–8642.2017.04.013 |
[5] | 葛波涌, 王明太, 王玉波, 等. 社区普及徒手心肺复苏对猝死患者抢救的意义[J]. 中华急诊医学杂志, 2017, 26(8): 974-976. DOI:10.3760/cma.j.issn.1671-0282.2017.08.032 |
[6] | 龚峥, 赵燊, 李燕春, 等. 心肺复苏反馈装置对复苏按压质量考核的影响[J]. 中华急诊医学杂志, 2018, 27(2): 183-187. DOI:10.3760/cma.j.issn.1671-0282.2018.02.015 |
[7] | 花嵘, 燕宪亮, 赵宁军, 等. 大学生心肺复苏教学效果的研究[J]. 中华急诊医学杂志, 2017, 26(10): 1212-1215. DOI:10.3760/cma.j.issn.1671-0282.2017.10.026 |
[8] | Link M S, Berkow L C, Kudenchuk P J, et al. Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care[J]. Circulation, 2015, 132(18 Suppl 2): S444-64. DOI:10.1161/CIR.0000000000000261 |
[9] | Xu J, Li C, Zheng LL, et al. Pulse oximetry: a non-invasive, novel marker for the quality of chest compressions in porcine models of cardiac arrest[J]. PLoS One, 2015, 10(10): e0139707. DOI:10.1371/journal.pone.0139707 |
[10] | 钱欣, 林世荣. 初始心律对院内心搏骤停患者预后的影响[J]. 中华急诊医学杂志, 2017, 26(2): 202-205. DOI:10.3760/cma.j.issn.1671-0282.2017.02.017 |
[11] | Na JU, Han SK, Choi PC, et al. Effect of metronome rates on the quality of bag-mask ventilationduringmetronome-guided:cardiopulmonary resuscitation: A randomized simulation study[J]. World J Emerg Med, 2017, 8(2): 136-140. DOI:10.5847/wjem.j.1920-8642.2017.02.010 |
[11] | Na JU. Effect of metronome rates on the quality of bag-mask ventilation during metronome-guided 30: 2 cardiopulmonary resuscitation: A randomized simulation study[J]. World J Emerg Med, 2017, 8(2): 136. DOI:10.5847/wjem.j.1920-8642.2017.02.010 |
[12] | 李晨, 徐军, 朱华栋, 等. 有之以为利, 无之以为用:心肺复苏中的辨证施治[J]. 中华急诊医学杂志, 2017, 26(2): 138-140. DOI:10.3760/cma.j.issn.1671-0282.2017.02.002 |
[13] | Segers P, O'Rourke MF, Parker K, et al. Towards a consensus on the understanding and analysis of the pulse waveform: Results from the 2016 Workshop on Arterial Hemodynamics: Past, present and future[J]. Artery Research, 2017, 18: 75-80. DOI:10.1016/j.artres.2017.03.004 |
[14] | Hametner B, Wassertheurer S. Pulse waveform analysis: is it ready for prime time?[J]. Curr Hypertens Rep, 2017, 19(9): 73. DOI:10.1007/s11906-017-0769-3 |
[15] | Nolan JP, Soar J, Zideman DA, et al. European resuscitation council guidelines for resuscitation 2010 section 1. executive summary[J]. Resuscitation, 2010, 81(10): 1219-1276. DOI:10.1016/j.resuscitation.2010.08.021 |
[16] | Segal N, Metzger AK, Moore JC, et al. Correlation of end tidal carbon dioxide, amplitude spectrum area, and coronary perfusion pressure in a porcine model of cardiac arrest[J]. Physiol Rep, 2017, 5(17): e13401. DOI:10.14814/phy2.13401 |
[17] | Bullock A, Dodington JM, Donoghue AJ, et al. Capnography use during intubation and cardiopulmonary resuscitation in the pediatric emergency department[J]. Pediatr Emerg Care, 2017, 33(7): 457-461. DOI:10.1097/pec.0000000000000813 |
[18] | Paiva EF, Paxton JH, O'Neil BJ. The use of end-tidal carbon dioxide (ETCO2) measurement to guide management of cardiac arrest: A systematic review[J]. Resuscitation, 2018, 123: 1-7. DOI:10.1016/j.resuscitation.2017.12.003 |
[19] | Neumar R W, Shuster M, Callaway C W, et al. Part 1: Executive Summary: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care[J]. Circulation, 2015, 132(18 Suppl 2): S315-367. DOI:10.1161/CIR.0000000000000252 |
[20] | Donald J. End tidal carbon dioxide monitoring in prehospital and retrieval medicine: a review[J]. Emerg Med J, 2006, 23(9): 728-730. DOI:10.1136/emj.2006.037184 |
[21] | Okamoto H, Hoka S, Kawasaki T, et al. Changes in end-tidal carbon dioxide tension following sodium bicarbonate administration: Correlation with cardiac output and haemoglobin concentration[J]. Acta Anaesthesiol Scand, 1995, 39(1): 79-84. DOI:10.1111/j.1399-6576.1995.tb05596.x |
[22] | Gonzalez ER, Ornato JP, Garnett AR, et al. Dose-dependent vasopressor response to epinephrine during CPR in human beings[J]. Ann Emerg Med, 1989, 18(9): 920-926. DOI:10.1016/s0196-0644(89)80453-6 |
[23] | Cantineau JP, Merckx P, Lambert Y, et al. Effect of epinephrine on end-tidal carbon dioxide pressure during prehospital cardiopulmonary resuscitation[J]. Am J Emerg Med, 1994, 12(3): 267-270. DOI:10.1016/0735-6757(94)90136-8 |