急性肾损伤(acute kidney injury,AKI)指短时间内由于各种原因肾小球滤过率突然下降导致含氮物质蓄积,从而引起水、电解质、酸碱平衡和全身并发症快速发展的临床综合征[1]。成人重症监护室(intensive care unit, ICU)中AKI的发病率高达16%~67%[2-12],并且,近10年来,AKI的发生率还在以2.8%的速度逐年升高。脓毒症(sepsis)指宿主对感染反应失调导致的危及生命的器官功能损害的临床综合征[13]。脓毒症发病率高,是AKI最常见的病因之一。脓毒症致急性肾损伤(sepsis-induced acute kidney injury, SAKI)比例高达26%~50%[14-18]。SAKI不同于非脓毒症所致AKI,具有独特的病理生理机制,因此SAKI需要得到临床医护人员的更多重视和认知。本文根据已有SAKI研究进展予以述评。
1 SAKI的流行病学一项纳入120 123例患者的大样本研究数据显示,在ICU患者中,SAKI的发生率为11.7%,是ICU医生面对的常见疾病之一[14]。高龄人群及女性更容易发生SAKI[14-15, 19-21]。另外,一些基础情况,如慢性肾病、糖尿病、心力衰竭、恶性肿瘤和肝病均可增加SAKI的易感性[14, 15, 21-22]。
2 SAKI的发病机制SAKI的发病机制复杂,其具体机制尚未完全阐明。本文就已得到初步验证的机制作以下阐述。
2.1 全身及肾脏血流动力学既往认为,脓毒症时肾脏血管收缩,肾灌注量减少,从而引起AKI[23]。但是目前越来越多的证据显示,并非所有SAKI均存在肾血流量的下降。Langenberg等[24]通过直接注射大肠杆菌入血制造了脓毒血症的动物模型,研究发现注射大肠杆菌后,肾血流量反而出现了增加。因此,有人推测肾内血流分布可能是导致SAKI的因素之一。Calzavacca等在研究中分别测量了肾皮质及髓质的血流量和氧分压,研究发现,脓毒症时肾皮质未在血流量和氧分压方面发生明显变化,但髓质在这两个指标中均出现了明显下降,这个结果验证了上述观点。近年来,CVP作为AKI发生发展的重要独立影响因素,成为脓毒症患者补液量的重要参考指标。有研究认为,较高的CVP可能会增加肾静脉压力,从而影响肾小球毛细血管静水压,从而促进AKI的发生[26]。由此可见,CVP对静脉系统的影响也是SAKI发生发展可能存在的机制之一。
2.2 免疫及炎症介导损伤细胞因子是SAKI发生发展的重要参与者,已有研究表明白细胞介素(interleukin,IL)-6、IL-10、巨细胞移动抑制因子与SAKI具有密切的相关性[27-28]。这些细胞因子一方面帮助机体清除感染源,另一方面诱导了器官损伤[29]。脓毒症时,病原体通过模式识别受体相互作用,激活包括肾上皮细胞和树突状细胞在内的多种细胞, 这些受体的参与导致炎症基因转录的上调和固有免疫的启动[30]。之前的研究表明,长链非编码RNA MALAT1在脓毒症致AKI动物和细胞模型中均显著升高,通过miR-146a-5p调节NF-κB通路调节炎症反应促进AKI的发生发展[31],证实了炎症反应在SAKI中的重要作用。
2.3 肾小管细胞凋亡以前的理论认为,急性肾小管坏死是导致SAKI发生的重要病理生理机制[32]。但已有较多的研究对这个观点提出了质疑。Maiden等[33]报道,在脓毒症休克的模型中,急性肾功能不全与细胞外观或超微结构改变无关。Langenberg等[34]在一项纳入184例SAKI患者的研究中发现,仅有26例(22%)表现为急性肾小管坏死。由此可见,肾小管细胞坏死并非是SAKI的必要条件。随着对SAKI发病机制的不断探究,人们发现肾小管上皮细胞凋亡在SAKI中起着关键性的作用[35]。肾小管上皮细胞凋亡会导致原尿返漏、管型形成。在凋亡过程中,蛋白水解酶家族被激活,caspases是蛋白酶中被研究最为深入的一员。大多数caspases以无活性的酶原形式存在,在凋亡过程中被级联激活。主要通过两条途径即外源性的死亡受体途径和内源性的线粒体途径激活,分别激活caspase-8和caspase-9酶原,两条途径均激活下游效应子caspase-3而导致细胞凋亡。线粒体功能障碍在SAKI发病机制中发挥关键作用。在脓毒症大鼠模型中肝,肾,骨骼肌,胰腺均能观察到线粒体损伤[36]。脓毒症病理条件下,肾脏细胞线粒体形态及功能改变,包括线粒体质量降低,嵴断裂,线粒体肿胀,膜完整性受损[37]。线粒体受损后,Bax插入、核苷酸化和线粒体通透性转变孔开放增加,细胞色素C释放入细胞质激活上游caspases发生级联反应,导致细胞调亡。
3 SAKI的诊断 3.1 诊断标准根据2016年Sepsis-3指南,由感染因素导致序贯性器官衰竭评估(the Sequential [Sepsis-related] Organ Failure Assessment,SOFA)量表评分变化≥2时,即可诊断为脓毒症[13]。AKI诊断标准:根据改善全球肾脏病预后组织标准48 h内血清肌酐(serum creatinine,sCr)绝对值升高≥26.5 μmol/L,或1周内sCr较基础值升高1.5倍,或6 h尿量<0.5 mL/(kg·h),则可诊断AKI。因此,SAKI的诊断需同时满足上述两个诊断标准,并且AKI继发于脓毒症。
3.2 诊断标志物目前的诊断标准基于sCr和尿量,但这两个指标具有滞后性,确诊时间的推迟可能导致不良结局[38]。因此,我们需要更早期的预测AKI的发生。最近,有研究显示尿中性粒细胞明胶酶相关脂质运载蛋白(Urinary neutrophil gelatinase-associated lipocalin,uNGAL)、尿液外泌体内的激活转录因子3(Urinary exosomal activating transcriptional factor 3,uATF3)可用于SAKI的早期诊断[39-40],但其受到较多因素影响,且机制尚未完全明确。目前,尚未有具有较高敏感性和特异性、快速、经济的早期诊断标志物,这是当前一个重要的研究方向。
3.3 超声造影在SAKI早期诊断中的应用超声造影(contrast enhanced ultrasound, CEUS)是利用血液中气体微泡在声场中非线性效应及其产生的强烈背向散射,获取对比增强图像以监测及评价实质器官微循环和血流灌注的新技术。其无造影剂损害,无辐射,体积小,可实现床旁检查,非常适合ICU医生的工作需求。CEUS所使用的微泡造影剂(ultrasound contrast agent, UCA)是由稳定的脂质壳膜包裹氟碳气体形成与红细胞形态、血流动力学特点相似的微气泡,经外周静脉注入血循环后,微气泡仅存于血液循环中,不会进入组织间隙,从而使血管可视。UCA声阻抗与血液不同,所产生的信号强度与血流灌注参数密切相关[41]。基于这个原理,超声造影可以早期探查肾脏的微灌注情况。有研究表明超声造影早期诊断AKI的准确性可达到81.25%,相比于传统AKI诊断指标,超声造影能早期反映肾功能损伤[42]。
4 SAKI治疗由于脓毒症致AKI的机制尚未完全明确,目前还没有单一有效的治疗去改善SAKI的发展。
4.1 肾脏替代治疗肾脏替代治疗(renal replacement therapy,RRT)已被广泛应用于SAKI,而RRT启动时机以及使用剂量是其在SAKI中应用必须面对的重要问题。RRT的启动时机存在很大的争议,已有的一些回顾性的数据显示更早的启动RRT以及控制液体过载的程度可能提高生存率[43-44]。肾脏持续肾脏替代治疗(Continuous renal replacement therapy,CRRT)因其对患者病情的适应性,较好的生理及血流动力学控制,常用于不稳定的危重患者。最近的研究显示,CRRT相比于间歇性血液透析,更有助于肾功能的恢复以及降低慢性肾脏病发病的长期风险[45-46]。另外,CRRT还具有一个令其更适用于SAKI的独特优势。脓毒症炎症因子介导的免疫损伤是SAKI发生发展的重要机制之一。CRRT在肾功能替代的同时还可以清除炎症介质,如α-干扰素(IFN-α)、IL-1β等,从而减轻炎症介质对肾脏的损伤[47]。
4.2 液体复苏脓毒症患者早期复苏的理念对于预防和治疗SAKI有着重要作用[48]。但不注重个体化的补液可能会并发更多的肾脏损害。Legrand等[26]研究显示,在脓毒症患者中,CVP为6 mmHg时存在AKI风险仅为30%,随着CVP每升高5 mmHg,新发或持续AKI的风险升高2.7倍,当CVP为15 mmHg时存在AKI风险高达80%。CVP 6~10 mmHg的脓毒症患者发病率及死亡率均低于CVP 11~14 mmHg组[49]。由此可见,CVP在脓毒症患者的管理中是重要的监测指标,个体化并且响应动态监测的补液对于患者预后有着重要影响。
4.3 血管活性药物在脓毒症患者中,最常用的血管活性药物是去甲肾上腺素,但其在SAKI发生发展中的作用尚未明确。Bai等[50]的研究显示脓毒性休克患者早期给予去甲肾上腺素可以提高生存率。但Lankadeva等[51]却在实验中得到了相反的结论,去甲肾上腺素可能会引起肾内分流,从而继发髓质缺氧,加重肾功能损伤。因此,去甲肾上腺素在SAKI中的作用还有待更多研究去证实。
4.4 抗生素的应用Bagshaw等[52]回顾了4532名脓毒性休克的患者发现,早期适当的抗生素应用和脓毒症感染源的控制与AKI的发生风险降低有关,抗生素应用每延迟1 h,AKI发生风险增加约40%,故对脓毒症AKI患者尽早使用抗生素治疗。
4.5 靶向分子和细胞治疗由于SAKI的发病机制目前被认为是一个涉及细胞凋亡、免疫和炎症过程的多因素过程,针对这些通路的新医疗手段已经出现,可能具有潜在的治疗价值。在实验模型中,caspase抑制剂靶向影响凋亡通路和抑制炎症级联反应已经显示出一些有前途的结果。Lee等[53]发现在脓毒症模型中,使用caspase 3和白介素-10抑制剂对小鼠SAKI的发生有一定的保护作用。在甘油诱导的AKI大鼠模型中也观察到类似的结果[54]。本团队近期发现的LncRNA-MALAT1/miR-146a-5p/NF-κB轴,也可作为药物筛选的靶点,进而改善SAKI患者的预后[31]。另外,其他治疗药物,如胃饥饿素(ghrelin)、低剂量的后叶加压素、腺苷受体激动剂、红细胞生成素均显示具有减弱肾脏炎症反应及抑制细胞凋亡的作用[55-58]。
AKI是临床医师面临的巨大挑战。SAKI是AKI的特殊类型,但由于其特殊而复杂的病理生理机制,迄今为止,还没有一种单一有效的疗法可以改变其病程。然而,随着人们对其逐渐深入的研究,其流行病学特点、病理生理机制、早期诊断手段逐渐被人们所认知。虽然这些认知尚有不足,临床医生仍需要对其保持足够的关注和认知。另外,靶向治疗作为一新型技术,应该得到足够的重视。
[1] | 郭锦洲. 改善全球肾脏病预后组织(KDIGO)临床实践指南:急性肾损伤[J]. 肾脏病与透析肾移植杂志, 2013, 22(1): 57-60. DOI:10.3969/j.issn.1006-298X.2013.01.014 |
[2] | de Mendonca A, Vincent JL, Suter PM, et al. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score[J]. Intensive Care Med, 2000, 26: 915-921. DOI:10.1007/s001340051281 |
[3] | Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study[J]. JAMA, 2005, 294: 813-818. DOI:10.1001/jama.294.7.813 |
[4] | Bagshaw SM, George C, Bellomo R, et al. Changes in the incidence and out-come for early acute kidney injury in a cohort of Australian intensive care units[J]. Crit Care, 2007, 11: R68. DOI:10.1186/cc5949 |
[5] | Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE[J]. Crit Care Med, 2007, 35: 1837-1843. DOI:10.1097/01.ccm.0000277041.13090.0a |
[6] | Bagshaw SM, George C, Dinu I, et al. A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients[J]. Nephrol Dial Transplant, 2008, 23: 1203-1210. DOI:10.1093/ndt/gfn390 |
[7] | Andrikos E, Tseke P, Balafa O, et al. Epidemiology of acute renal failure in ICUs: a multi-center prospective study[J]. Blood Purification, 2009, 28: 239-244. DOI:10.1159/000231986 |
[8] | Thakar CV, Christianson A, Freyberg R, et al. Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study[J]. Crit Care Med, 2009, 37: 2552-2558. DOI:10.1097/ccm.0b013e3181a5906f |
[9] | Medve L, Antek C, Paloczi B, et al. Epidemiology of acute kidney injury in Hungarian intensive care units: a multicenter, prospective, observational study[J]. BMC Nephrol, 2011, 12: 43. DOI:10.1186/1471-2369-12-43 |
[10] | Piccinni P, Cruz DN, Gramaticopolo S, et al. NEFROINT Investigators. Prospective multicenter study on epidemiology of acute kidney injury in the ICU: a critical care nephrology Italian collaborative effort (NEFROINT)[J]. Min Anest, 2011, 77: 1072-1083. DOI:10.1213/ane.0b013e3181aa3079 |
[11] | Nisula S, Kaukonen KM, Vaara ST, et al. FINNAKI Study Group. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study[J]. Intensive Care Med, 2013, 39: 420-428. DOI:10.1007/s00134-012-2796-5 |
[12] | Poukkanen M, Vaara ST, Pettila V, et al. FINNAKI Study Group. Acute kidney injury in patients with severe sepsis in Finnish intensive care units[J]. Acta Anaesthesiol Scand, 2013, 57: 863-872. DOI:10.1111/aas.12133 |
[13] | Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical Criteria for Sepsis For the Third International Consensus Definitions for Sepsis and Septic Chock (Sepsis-3)[J]. JAMA, 2016, 315(8): 762-774. DOI:10.1001/jama.2016.0288 |
[14] | Bagshaw SM, George C, Bellomo R, et al. Early acute kidney injury and sepsis: a multicentre evaluation[J]. Crit Care, 2008, 12: R47. DOI:10.1186/cc6863 |
[15] | Bagshaw SM, Uchino S, Bellomo R, et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes[J]. Clin J Am Soc Nephrol, 2007, 2: 431-439. DOI:10.1016/j.hkjn.2015.09.072 |
[16] | Vincent JL, Sakr Y, Sprung CL, et al. Sepsis occurrence in acutely ill patients ivestigators. Sepsis in European intensive care units: results of the SOAP study[J]. Crit Care Med, 2006, 34: 344-353. DOI:10.1097/01.ccm.0000194725.48928.3a |
[17] | Cruz DN, Bolgan I, Perazella MA, et al. North east Italian prospective hospital renal outcome survey on acute kidney injury(NEiPHROS-AKI): targeting the problem with the RIFLE criteria[J]. Clin J Am Soc Nephrol, 2007, 2: 418-425. DOI:10.2215/CJN.03361006 |
[18] | Kolhe NV, Stevens PE, Crowe AV, et al. Case mix, outcome and activity for patients with severe acute kidney injury during the first 24 hours after admission to an adult, general critical care unit: application of predictive models from a secondary analysis of the ICNARC Case Mix Programme database[J]. Crit Care, 2008, 12(Suppl 1): S2-2008. DOI:10.1186/cc7003 |
[19] | Lopes JA, Jorge S, Resina C, et al. Acute renal failure in patients with sepsis[J]. Crit Care, 2007, 11: 411. DOI:10.1186/cc5735 |
[20] | Hoste EA, Lameire NH, Vanholder RC, et al. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome[J]. J Am Soc Nephrol, 2003, 14: 1022-1030. DOI:10.1097/01.ASN.0000059863.48590.E9 |
[21] | Bagshaw SM, Lapinsky S, Dial S, et al. Cooperative Antimicrobial Therapy of Septic Shock Database Research Group. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy[J]. Intensive Care Med, 2009, 35: 871-881. DOI:10.1007/s00134-008-1367-2 |
[22] | Oppert M, Engel C, Brunkhorst FM, et al. German Competence Network Sepsis (Sepnet): Acute renal failure in patients with severe sepsis and septic shock-a significant independent risk factor for mortality: results from the German Prevalence Study[J]. Nephrol Dial Transplant, 2008, 23: 904-909. DOI:10.1093/ndt/gfm610 |
[23] | Mayeux PR, MacMillan-Crow LA. Pharmacological targets in the renal peritubular microenvironment: Implications for therapy for sepsis-induced acute kidney injury[J]. Pharmacol Ther, 2012, 134(2): 139-155. DOI:10.1016/j.pharmthera.2012.01.004 |
[24] | Langenber C, Wan L, Egi M, et al. Renal blood flow in experimental septic acute renal failure[J]. Kidney Int, 2006, 69: 1996-2002. DOI:10.1038/sj.ki.5000440 |
[25] | Calzavacca P, Evans RG, Bailey M, et al. Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury[J]. Crit Care Med, 2015, 43(10): e431-439. DOI:10.1097/CCM.0000000000001198 |
[26] | Legrand M, Dupuis C, Simon C, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: A retrospective observational study[J]. Crit Care, 2013, 17(6): R278. DOI:10.1186/cc13133 |
[27] | Murugan R, Karajala-Subramanyam V, Lee M, et al. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival[J]. Kid Intern, 2010, 77: 527-535. DOI:10.1038/ki.2009.502 |
[28] | Payen D, Lukaszewicz AC, Legrand M, et al. A multicentre study of acute kidney injury in severe sepsis and septic shock: association with inflammatory phenotype and HLA genotype[J]. PloS one, 2012, 7: e35838. DOI:10.1371/journal.pone.0035838 |
[29] | Angus DC, van der Poll T. Severe sepsis and septic shock[J]. N Engl J Med, 2013, 369: 840-851. DOI:10.4161/viru.27409 |
[30] | Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140: 805-820. DOI:10.1016/j.cell.2010.01.022 |
[31] | Ding Y, Guo F, Zhu T, et al. Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-kappaB signaling pathway[J]. Int J Mol Med, 2018, 41(1): 446-454. DOI:10.3892/ijmm.2017.3232 |
[32] | Takasu O, Gaut JP, Watanabe E, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis[J]. Am J Respir Crit Care Med, 2013, 187(5): 509-517. DOI:10.1164/rccm.201211-1983OC |
[33] | MJ Maiden, S Otto, J Brearly, et al. Structure and Function of the Kidney in Septic Shock. A Prospective Controlled Experimental Study[J]. Am J Respir Crit Care Med, 2016, 194(6): 692-700. DOI:10.1164/rccm.201511-2285OC |
[34] | Langenberg C, Bagshaw SM, May CN, et al. The histopathology of septic acute kidney injury: a systematic review[J]. Crit Care, 2008, 12: R38. DOI:10.1186/cc6823 |
[35] | Gomez H, Ince C, De Backer D, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury[J]. Shock, 2014, 41(1): 3-11. DOI:10.1097/SHK.0000000000000052 |
[36] | Morel J, Hargreaves I, Brealey D, et al. Simvastatin pre-treatment improves survival and mitochondrial function in a 3-day fluid-resuscitated rat model of sepsis[J]. Clin Sci (Lond), 2017, 131(8): 747-758. DOI:10.1042/cs20160802 |
[37] | Parikh SM, Yang Y, He L, et al. Mitochondrial function and disturbances in the septic kidney[J]. Semin Nephrol, 2015, 35(1): 108-119. DOI:10.1016/j.semnephrol.2015.01.011 |
[38] | Chavez-Iñiguez JS, Garcia-Garcia G, Briseño-Ramirez J, et al. The effect of resolution time of acute kidney injury on clinical outcomes[J]. Indian J Nephrol, 2017, 27(2): 99-103. DOI:10.4103/0971-4065.200514 |
[39] | 尚跃丰, 李家瑞, 张继翱, 等. 中性粒细胞明胶酶相关脂质运载蛋白对脓毒症患者发生急性肾损伤的诊断研究[J]. 中华急诊医学杂志, 2017, 26(5): 538-543. DOI:10.3760/cma.j.issn.1671-0282.2017.05.011 |
[40] | Panich T, Chancharoenthana W, Somparn P, et al. Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury[J]. BMC Nephrol, 2017, 18(1): 10. DOI:10.1186/s12882-016-0415-3 |
[41] | 冉丽斯, 徐昉, 廖晓辉. 超声造影在急性肾损伤早期诊断及预后评估中的研究进展[J]. 中国急救医学, 2018, 38(9): 794-798. DOI:10.3969/j.issn.1002-1949.2018.09.011 |
[42] | 王俊义, 高心晶, 王东, 等. 动态超声造影对脓毒症性AKI的诊断性研究[J]. 中华危重病急救医学, 2018, 30(2): 160-164. DOI:10.3760/cma.j.issn.2095-4352.2018.02.013 |
[43] | Karvellas CJ, Farhat MR, Sajjad I, et al. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis[J]. Crit Care, 2011, 15: R72. DOI:10.1186/cc10061 |
[44] | Sutherland S M, Zappitelli M, Alexander S R, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry[J]. Am J Kid Dis, 2010, 55(2): 316-325. DOI:10.1053/j.ajkd.2009.10.048 |
[45] | Schneider AG, Bellomo R, Bagshaw SM, et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis[J]. Intensive Care Med, 2013, 39: 987-997. DOI:10.1007/s00134-013-2864-5 |
[46] | Wa ld, R on, Shariff, et al. The Association between renal replacement therapy modality and long-term outcomes among critically ill adults with acute kidney injury: a retrospective cohort study[J]. Crit Care Med, 2014, 42(4): 868-877. DOI:10.1097/CCM.0000000000000042 |
[47] | Kade G, Lubas A, Rzeszotarska A, et al. Effectiveness of high cut-off hemofilters in the removal of selected cytokines in patients during septic shock accompanied by acute kidney injury: preliminary study[J]. Med Sci Monit, 2016, 22: 4338-4344. DOI:10.12659/MSM.896819 |
[48] | Luo JC, Qiu XH, Pan C, et al. Increased cardiac index attenuates septic acute kidney injury: a prospective observational study[J]. BMC Anesthesiol, 2015, 15: 22. DOI:10.1186/s12871-015-0005-0 |
[49] | 王彦军, 高蕊, 贾文元, 等. 中心静脉压在感染性休克致急性肾损伤中的作用[J]. 创伤外科杂志, 2017, 19(8): 566-569. DOI:10.3969/j.issn.1009-4237.2017.08.002 |
[50] | Bai X, Yu W, Ji W, et al. Early versus delayed administration of norepinephrine in patients with septic shock[J]. Crit Care, 2014, 18(5): 532. DOI:10.1186/s13054-014-0532-y |
[51] | Lankadeva YR, Kosaka J, Evans RG, et al. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury[J]. Kidney Int, 2016, 90(1): 100-108. DOI:10.1016/j.kint.2016.02.017 |
[52] | Bagshaw SM, Lapinsky S, Dial S, et al. Acute kidney injury in septic shock: Clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy[J]. Intensive Care Med, 2009, 35(5): 871-881. DOI:10.1007/s00134-008-1367-2 |
[53] | Lee SY, Lee YS, Choi HM, et al. Distinct pathophysiologic mechanisms of septic acute kidney injury: role of immune suppression and renal tubular cell apoptosis in murine model of septic acute kidney injury[J]. Crit Care Med, 2012, 40: 2997-3006. DOI:10.1097/CCM.0b013e31825b912d |
[54] | Homsi E, Janino P, de Faria JB. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure[J]. Kidney Int, 2006, 69: 1385-1392. DOI:10.1038/sj.ki.5000315 |
[55] | Wang W, Bansal S, Falk S, et al. Ghrelin protects mice against endotoxemia-induced acute kidney injury[J]. Am J Physiol Renal Physiol, 2009, 297: F1032-1037. DOI:10.1152/ajprenal.00044.2009 |
[56] | Simon F, Giudici R, Scheuerle A, et al. Comparison of cardiac, hepatic, and renal effects of arginine vasopressin and noradrenaline during porcine fecal peritonitis: a randomized controlled trial[J]. Crit Care, 2009, 13: R113. DOI:10.1186/cc7959 |
[57] | Lee HT, Kim M, Joo JD, et al. A3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis[J]. Am J Physiol Regul Integr Comp Physiol, 2006, 291: R959-969. DOI:10.1152/ajpregu.00034.2006 |
[58] | Bahlmann FH, Fliser D. Erythropoietin and renoprotection[J]. Curr Opin Nephrol Hypertens, 2009, 18: 15-20. DOI:10.1097/mnh.0b013e32831a9dde |