2 浙江省宁波大学医学院附属鄞州医院呼吸与危重症医学科 315040
2 Respiratory and Critical Care Medicine Department, Yinzhou Hospital Affiliated to Medicine School of Ningbo University, Ningbo 315040, China
急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)是临床常见的各种肺内、肺外因素导致的弥漫性肺泡损伤及肺部炎症,进而发展为急性进行性、缺氧性呼吸衰竭为主要表现的临床综合征,近年来随着诊疗技术的提高,病死率较前有所下降,但仍居高不下,总体病死率在30%以上[1-3],其预后与早期原发病治疗和疾病严重程度明显相关。目前ARDS诊断仍无特异性生物学标志物,主要依靠临床及影像学表现,胸部CT仍被认为是诊断“金标准”[4],但由于其费用高、辐射损伤、可重复性差、重症患者存在转运风险等诸多因素限制了其在危重症患者中的临床应用。肺部超声(lung utrasonography,LUS)在ARDS应用中具有明显优势[5-7],表现为肺泡间质综合征,其ARDS诊断敏感性和特异性与胸部CT相似[8-10],还可以通过LUS评分半定量评估ARDS患者血管外肺水含量[11-12]。本研究采用LUS评分技术评估ARDS患者病情及预后价值。
1 资料与方法 1.1 一般资料采用前瞻性双盲队列临床研究方法,选取2016年7月至2020年1月宁波市鄞州人民医院ICU收治ARDS患者,纳入依据符合2012年柏林ARDS标准定义的成年患者。
排除标准:年龄 < 18周岁、淋巴瘤等血液系统疾病、严重心力衰竭、严重的心脏瓣膜病、心源性哮喘、肺间质性病变、自身免疫性疾病、接受放化疗及免疫抑制剂治疗的患者;存在经肺热稀释(transpulmonary thermodilution, TPTD)置入禁忌的患者及拒绝本研究的患者。
最终共纳入符合条件的ARDS患者52例,年龄(69.45±12.62)岁,男性32例(61.54%),女性20例(38.46%);根据原发病因,肺内因素ARDS 38例,重症肺炎为主,占67.31%(35/52);肺外因素ARDS 14例,肺外源性脓毒症为主,占21.53%(11/52)。
本研究符合医院伦理学标准,并经医院伦理委员会批准,伦理批件号:(2019)年伦理审查(科研)第(057)号,所有检查和治疗均获患者亲属签署知情同意。
1.2 仪器与研究方法所有入组患者检查前给予纯氧吸入30 min,行美国GEM Premier 300动脉血气分析检查(计算氧合指数OI)、德国西门子SOMATOM CT 16行胸部CT和美国索诺声Series S-ICUTM型号超声仪行LUS检查,股动脉穿刺置管行德国PULSION PV2014L16 TPTD监测获取血管外肺水指数(extravascular lung water index, EVLWI);患者取仰卧位,以腋前线、腋后线及两侧乳头连线将半侧胸廓分为6个分区,整个胸部分为12个分区,指定2名具有超声资质的医师扫查整个胸部12个分区(两名超声医师互为双盲),记录每个分区最高分值且数据取均值,12个分区分值总和即为LUS评分值,分值越高代表肺水含量越多,病情越重,预后越差。LUS评分标准[13-14]:正常肺组织通气区计0分;轻中度肺组织失气化计1分;重度肺组织失气化计2分;肺实变计3分,见图 1。
![]() |
AAL为腋前线、PAL为腋后线;B1为正常肺组织通气区、B2为轻中度肺组织失气化区、B3为重度肺组织失气化区、B4为肺叶实变 图 1 LUS检查胸部分区法(A)及LUS评分标准(B) Fig 1 The method of chest division by LUS (A) and LUS scoring criteria (B) |
|
采用SPSS 18.0统计软件分析,计量资料先行正态性检验,符合正态分布的计量资料用均数±标准差(Mean±SD)表示,两组间比较采用成组t检验;非正态计量资料用中位数(四分位数)[M(QL, QU)]表示,采用Mann-Whitney U检验;计数资料采用频数(百分率)表示,组间比较采用χ2检验。双变量采用Pearson线性相关分析变量间的相关性,绘制ROC曲线得出LUS评分及EVLWI曲线下面积,计算出LUS评分预测ARDS患者严重程度的截断值。以P < 0.05为差异有统计学意义。
2 结果 2.1 患者一般临床资料比较共选取52例符合条件的ARDS患者,轻中度组34例(100 mmHg < OI≤300 mmHg,1 mmHg=0.133 kPa)和重度组18例(OI≤100 mmHg),其中轻中度组病死率为14.71%(5/34),重度组病死率为50.00%(9/18), 重度组患者ICU机械通气时间、住院天数均较轻中度组明显延长(P < 0.05),差异有统计学意义;另平均动脉压(mean arterial pressure, MAP)、呼气末正压(positive end-expiratory pressure, PEEP)、肺顺应性、OI、EVLWI、APACHEⅡ评分、肺损伤评分(lung injury score, LIS)两组间差异均有统计学意义(均P < 0.05);而年龄、性别、左室射血分数(left ventricular ejection fraction, LVEF)两组间差异均无统计学意义(均P > 0.05),见表 1。
指标 | 轻中度组 (n=34) |
重度组 (n=18) |
t/χ2值 | P值 |
年龄(岁, Mean±SD) | 67.54±11.28 | 73.87±13.52 | -0.753 | 0.753 |
男性/女性(例) | 25/9 | 7/11 | 3.761 | 0.645 |
LVEF(%, Mean±SD) | 0.61±0.21 | 0.63±0.19 | 0.279 | 0.702 |
MAP(mmHg, Mean±SD) | 83.17±20.03 | 63.28±23.19 | 7.442 | 0.044 |
OI(mmHg, Mean±SD | 265.10±58.37 | 87.52±53.68 | 19.237 | < 0.01 |
PEEP(cmH2O, Mean±SD) | 5.78±1.03 | 8.54±1.32 | 1.537 | 0.012 |
肺顺应性(mL/cmH2O, Mean±SD) | 67.55±18.92 | 48.36±18.92 | 7.541 | 0.019 |
EVLWI(mL/kg, Mean±SD) | 13.64±3.54 | 19.18±5.01 | 3.411 | < 0.01 |
APACHEⅡ评分(分, Mean±SD) | 16.55±5.98 | 20.79±6.89 | 7.319 | < 0.01 |
LIS评分(分, Mean±SD) | 2.33±0.11 | 2.84±0.56 | 2.119 | < 0.01 |
病死率(例, %) | 5(14.71) | 9(50.00) | 1.870 | 0.031 |
机械通气时间(d, Mean±SD) | 7.75±2.14 | 11.00±2.39 | 0.974 | 0.022 |
入住ICU天数(d, Mean±SD) | 13.95±3.72 | 18.21±6.78 | 6.935 | 0.027 |
注:LVEF为左室射血分数,MAP为平均动脉压,OI为氧合指数,PEEP为呼气末正压,EVLWI为肺血管外肺水指数,APACHEⅡ为急性生理学与慢性健康状况评分Ⅱ,LIS为肺损伤评分 |
共有41例患者完成1次LUS评分和胸部CT检查,其中11例患者先后完成2次LUS评分和胸部CT检查,共扫查了756个肺区,CT诊断肺实变415区,LUS诊断肺叶实变395区。LUS诊断准确率、敏感度、特异度、阳性预测值及阴性预测值分别为93.12%、91.33%、95.31%、95.95%、90.03%,见表 2。
LUS | 胸部CT | 合计 | |
阳性肺区 | 阴性肺区 | ||
阳性肺区 | 379 | 16 | 395 |
阴性肺区 | 36 | 325 | 361 |
合计 | 415 | 341 | 756 |
应用Pearson线性相关分析,发现LUS评分与EVLWI、LIS评分、APACHEⅡ评分呈明显正相关(r=0.756, P < 0.01;r=0.817, P < 0.01;r=0.655, P < 0.01),与OI呈明显负相关(r=-0.823, P < 0.01),且与EVLWI、LIS评分、OI呈高度相关,见图 2。
![]() |
LUS为肺部超声评分,EVLWI为血管外肺水指数,OI为氧合指数,LIS为急性肺损伤评分,APACHEⅡ为急性生理学与慢性健康状况评分系统Ⅱ 图 2 LUS评分与EVLWI、OI、APACHE Ⅱ评分、LIS评分相关性分析 Fig 2 Correlation analysis between LUS score and EVLWI, OI, APACHEⅡ score and LIS |
|
采用LUS评分评估患者严重程度的ROC曲线下面积(AUC)及通过TPTD获取EVLWI的AUC分别为0.922、0.972。以LUS评分19.50分作为截断值预测重度ARDS敏感度及特异度分别为0.833、0.791,见图 3。当LUS评分≥19.50时,说明患者病情危重,ICU住院时间延长,死亡风险显著增高。
![]() |
图 3 LUS评分及EVLWI的ROC曲线 Fig 3 The ROC curves of LUS score and EVLWI |
|
目前ARDS诊断仍存在困难,ARDS常常作为临床疾病的并发症出现,最常见的原发病因是肺部感染、脓毒症等[15]。胸部CT仍被认为是其诊断“金标准”,但重症患者存在转运风险,且胸部CT可重复性差,有辐射损伤,实际运用中临床医师及患者家属存在较多顾虑,从而限制其在重症患者中的应用。床边胸部X线片检查的优点在于可避免转运风险,但影像比较复杂、分辨率差,易受医师经验影响而缺乏客观性,且病情反映滞后。LUS已成为成熟的诊断技术,其在ARDS应用中具有明显优势[5, 16],其无创性、可操作性强、可反复床边检查等优势,特别适用于ARDS患者。
ARDS的特点是肺毛细血管通透性增加,致血管外肺水增多,是一种典型的非心源性肺水肿,血管外肺水的积累会损害肺泡气体交换,导致严重的呼吸窘迫和顽固性低氧血症。目前监测血管外肺水含量普遍采用的是TPTD技术、胸部CT和肺部超声。TPTD技术是目前公认的临床监测血管外肺水的金标准。胸部CT是影像学方法中定性和定量评价血管外肺水的标准,但对于重症患者其广泛临床应用受到限制。ICU内可以通过TPTD技术客观地获取ARDS患者EVLWI,在床边定量评价肺水肿[17]。Sakka等[18]研究发现ICU患者初始血管外肺水水平与病死率相关。多项研究也明确证实血管外肺水与ARDS患者预后明显相关[19-20]。虽然TPTD监测技术测定EVLWI准确性高,但该项技术属于有创检查,且费用昂贵,不能常规开展,极大限制其在临床中的应用。近年来国内外研究者均发现LUS评分与通过TPTD监测技术监测客观数据EVLWI呈明显正相关性[11-12, 21];Bataille等[11]的研究表明LUS评分以半定量方式评估ARDS患者毛细血管外肺水含量,与TPTD技术比较具有明显优势。目前胸部CT仍被认为是ARDS诊断的“金标准”;Ma等[10]研究报道ARDS患者LUS评分与胸部CT影像存在很强的相关性。本研究发现LUS评分与通过TPTD监测技术获得的EVLWI呈显著正相关,这与Zhao等[12]的研究相符。
APACHEⅡ评分系统是信度较高的危重病病情评价系统,可预测患者病情危重程度和病死率,APACHEⅡ分值与病死率之间存在明显正相关,即分值越高,病情越危重,病死率越高,其预测病死率高达86%,是评估ARDS预后的指标[22-23]。LIS评分是对肺损伤程度的临床评价,对ARDS的肺损伤程度作量化分析,评分内容包括胸片受累象限数、OI、PEEP水平及肺顺应性变化的评分评价肺损伤程度,评分越高,肺脏受累范围越广,病情越重,并且与肺血管通透性密切相关,目前在临床应用中最为广泛[24]。本研究对LUS评分与目前临床广泛使用信度较高的APACHEⅡ、LIS评分进行相关性分析,发现LUS评分与APACHEⅡ评分、LIS评分呈较明显正相关,这与之前的研究[12, 25-26]结论相一致,与OI呈明显负相关,本研究发现肺部超声评分越高,血管外肺水含量越多,病情危重程度越重,患者机械通气时间、住院时间越长,病死率越高。对比金标准胸部CT发现,LUS诊断ARDS具有较高的诊断效能,值得临床推广应用。另本研究发现,以LUS评分19.5分为重度ARDS患者预测截断值,其评估重度ARDS患者的敏感度、特异度分别为0.833、0.791,AUC为0.922,再次表明肺部超声能较好地评价ARDS患者病情严重程度。
利益冲突 所有作者均声明不存在利益冲突
[1] | Afshari A, Brok J, Moller AM, et al. Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trial sequential analysis[J]. Anesth Analg, 2011, 112(6): 1411-1421. DOI:10.1213/ANE.0b013e31820bd185 |
[2] | Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in Intensive Care Units in 50 countries[J]. JAMA, 2016, 315(8): 788-800. DOI:10.1001/jama.2016.0291 |
[3] | Takaoka Y, Goto S, Nakano T, et al. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice[J]. Sci Rep, 2014, 4: 5204. DOI:10.1038/srep05204 |
[4] | Mazzei MA, Guerrini S, Cioffi Squitieri N, et al. Role of computed tomography in the diagnosis of acute lung injury/acute respiratory distress syndrome[J]. Recenti Prog Med, 2012, 103(11): 459-464. DOI:10.1701/1166.12889 |
[5] | Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recommendations for point-of-care lung ultrasound[J]. Intensive Care Med, 2012, 38(4): 577-591. DOI:10.1007/s00134-012-2513-4 |
[6] | 张磊, 俞万钧, 马坚. 超声在肺部疾病中的临床应用[J]. 中国医学影像技术, 2017, 33(4): 608-611. DOI:10.13929/j.1003-3289.201608078 |
[7] | 黄鹤, 崔云亮, 田昭涛, 等. 急性呼吸窘迫综合征的肺部超声诊断价值[J]. 中华危重病急救医学, 2014, 26(8): 606-608. DOI:10.3760/cma.j.issn.2095-4352.2014.08.022 |
[8] | Wang Y, Shen Z, Lu X, et al. Sensitivity and specificity of ultrasound for the diagnosis of acute pulmonary edema: a systematic review and meta-analysis[J]. Med Ultrason, 2018, 1(1): 32-36. DOI:10.11152/mu-1223 |
[9] | Corradi F, Brusasco C, Pelosi P. Chest ultrasound in acute respiratory distress syndrome[J]. Curr Opin Crit Care, 2014, 20(1): 98-103. DOI:10.1097/MCC.0000000000000042 |
[10] | Ma H, Huang D, Guo L, et al. Strong correlation between lung ultrasound and chest computerized tomography imaging for the detection of acute lung injury/acute respiratory distress syndrome in rats[J]. J Thorac Dis, 2016, 8(7): 1443-1448. DOI:10.21037/jtd.2016.05.15 |
[11] | Bataille B, Rao G, Cocquet P, et al. Accuracy of ultrasound B-lines score and E/Ea ratio to estimate extravascular lung water and its variations in patients with acute respiratory distress syndrome[J]. J Clin Monit Comput, 2015, 29(1): 169-176. DOI:10.1007/s10877-014-9582-6 |
[12] | Zhao Z, Jiang L, Xi X, et al. Prognostic value of extravascular lung water assessed with lung ultrasound score by chest sonography in patients with acute respiratory distress syndrome[J]. BMC Pulm Med, 2015, 15: 98. DOI:10.1186/s12890-015-0091-2 |
[13] | Soummer A, Perbet S, Brisson H, et al. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress[J]. Crit Care Med, 2012, 40(7): 2064-2072. DOI:10.1097/CCM.0b013e31824e68ae |
[14] | Monastesse A, Girard F, Massicotte N, et al. Lung ultrasonography for the assessment of perioperative atelectasis: a pilot feasibility study[J]. Anesth Analg, 2017, 124(2): 494-504. DOI:10.1213/ANE.0000000000001603 |
[15] | 高延秋, 张根生, 张华, 等. PICCO在重症肺炎ARDS合并感染性休克患者治疗中的应用研究[J]. 中华急诊医学杂志, 2018, 27(6): 663-667. DOI:10.3760/cma.j.issn.1671-0282.2018.06.018 |
[16] | Volpicelli G. Point of care lung ultrasound[J]. Praxis, 2014, 103(12): 711-716. DOI:10.1024/1661-8157/a001690 |
[17] | Tagami T, Ong MEH. Extravascular lung water measurements in acute respiratory distress syndrome: why, how, and when?[J]. Curr Opin Crit Care, 2018, 24(3): 209-215. DOI:10.1097/MCC.0000000000000503 |
[18] | Sakka SG, Klein M, Reinhart K, et al. Prognostic value of extravascular lung water in critically ill patients[J]. Chest, 2002, 122(6): 2080-2086. DOI:10.1378/chest.122.6.2080 |
[19] | Jozwiak M, Silva S, Persichini R, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome[J]. Crit Care Med, 2013, 41(2): 472-480. DOI:10.1097/CCM.0b013e31826ab377 |
[20] | 董裕康, 梁显泉, 虞晓红. 血管外肺水指数和血管生成素-2动态变化对严重多发伤合并ARDS患者预后的预测价值[J]. 中华危重病急救医学, 2019, 31(5): 571-576. DOI:10.3760/cma.j.issn.2095-4352.2019.05.010 |
[21] | 王敏佳, 龚仕金, 严静, 等. 肺部超声B线数目与血管外肺水的相关性分析[J]. 浙江医学, 2016, 38(2): 109-111. |
[22] | Mach K. Staphylococcus epidermidis infection.Results of three groups evaluated according to APACHE Ⅱ-severity of disease classification system-with reference to risk, mortality and prognosis[J]. Wien Klin Wochenschr, 1992, 104(17): 540-542. |
[23] | 孙鸿鹏, 张谦, 吴明, 等. 脓毒症并急性呼吸窘迫综合征患者血小板-单核细胞聚集体变化相关性研究[J]. 中华急诊医学杂志, 2018, 27(5): 536-540. DOI:10.3760/cma.j.issn.1671-0282.2018.05.015 |
[24] | Murray JF, Matthay MA, Luce JM, et al. An expanded definition of the adult respiratory distress syndrome[J]. Am Rev Respir Dis, 1988, 138(3): 720-723. DOI:10.1164/ajrccm/138.3.720 |
[25] | Santos TM, Franci D, Coutinho CM, et al. A simplified ultrasound-based edema score to assess lung injury and clinical severity in septic patients[J]. Am J Emerg Med, 2013, 31(12): 1656-1660. DOI:10.1016/j.ajem.2013.08.053 |
[26] | 李莲花, 杨倩, 李黎明, 等. 肺部超声评分评估急性呼吸窘迫综合征患者病情严重程度及预后的价值[J]. 中华危重病急救医学, 2015, 27(7): 579-584. DOI:10.3760/cma.j.issn.2095-4352.2015.07.008 |