重症社区获得性肺炎具有起病急、病情重的特点。近年来,尽管人们在抗菌及支持治疗上取得了一些进展,但重症社区获得性肺炎的病死率仍然高达30%~50%[1-3]。液体治疗是危重患者最常用的治疗方法之一,是重症监护病房血流动力学管理的基石[4]。对于重症肺炎患者,特别是发生脓毒性休克的患者而言,早期足量补液可以改善组织灌注、优化血流动力学,并改善患者的预后[4-5]。然而过度的补液可能会造成液体超载(fluid overload),继而发生组织间质水肿、血管功能减退、重要脏器灌注不足,而近期一些研究发现液体超载可增加手术[6]、肿瘤[7]、急性肾损伤[8]患者的病死率。故目前对于重症肺炎早期的液体管理意见尚不统一。本文旨在研究不同液体平衡策略与重症肺炎患者预后之间的关系,从而为合理化重症肺炎患者,特别是疾病早期的液体治疗提供依据,以改善患者的预后。
1 资料与方法 1.1 资料与方法回顾性分析2017年1月至2019年8月间入住江苏省人民医院急诊监护病房(EICU)及呼吸监护病房(RICU)的成人重症肺炎患者(年龄18~92岁)。既往终末期肾病及入院后前3 d内行连续肾脏替代治疗的患者被排除。最终共89例患者被纳入研究。收集患者的一般资料、生命体征、实验室指标及其他数据等。
1.2 相关定义采用2016中国年成人CAP指南中重症肺炎标准[9],即符合下述1项主要标准或≥3项次要标准可诊断为重症肺炎,主要标准:(1)需要气管插管行机械通气治疗;(2) 脓毒性休克经积极液体复苏后仍需要血管活性药物治疗。次要标准:(1)呼吸频率≥30次/min;(2)氧合指数≤250 mmHg;(3)多肺叶浸润;(4)意识障碍和(或)定向障碍;(5)血尿素氮≥7 mmol/L;(6)低血压需要积极的液体复苏。所有患者均留置导尿管用于尿量的监测。
1.3 分组根据入ICU后前3 d的出入量将患者分为液体正平衡组(n=48)(positive fluid balance,PFB,即入ICU后前3 d总入量>总出量)和液体负平衡组(n=41)(negative fluid balance,NFB,即入ICU后前3 d总入量<总出量)。根据入ICU后30 d患者生存情况分为存活组(n=54)和死亡组(n=35)。
1.4 统计学方法应用SPSS 23.0统计软件进行分析,以Shaprio-Wilk检验计量资料正态性,服从或近似服从正态分布的计量资料采用均数±标准差(Mean±SD)表示,采用成组t检验。偏态分布的计量资料以中位数(四分位距),即M(IQR)表示,采用Mann-Whitney U检验。计数资料比采用χ2检验或Fisher确切概率法检验。采用二元logistic回归分析患者入ICU后30 d病死率相关影响因素,采用Kaplan-Meier生存曲线分析PFB组和NFB组间在入ICU后30 d生存率的差异,以P<0.05为差异有统计学意义。
2 结果 2.1 比较存活组和死亡组间基线资料存活组和死亡组患者的性别、高血压、冠心病、糖尿病、慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)、脑梗死、吸烟、饮酒、体温、心率、平均动脉压、呼吸频率、入院时实验室检查(包括白细胞、中性粒细胞、血红蛋白、红细胞比容、血小板、降钙素原、谷丙转氨酶、谷草转氨酶、血钾浓度、血钠浓度、血氯浓度、血钙浓度)、入ICU 24 h内新发电解质紊乱(包括低钾血症、高钾血症、低钠血症、高钠血症、低氯血症、低钙血症、高钙血症)、糖皮质激素使用间均无统计学意义(P>0.05),见表 1。
指标 | 存活组(n=54) | 死亡组(n=35) | P值 |
人口统计学资料 | |||
年龄,岁 | 62.5(50-73.5) | 72(58-82) | 0.008 |
男性(例,%) | 34(63.0) | 18(51.4) | 0.281 |
既往史、个人史(例,%) | |||
高血压 | 22(40.7) | 20(57.1) | 0.130 |
冠心病 | 5(9.3) | 3(8.6) | 1.000 |
糖尿病 | 17(31.5) | 9(25.7) | 0.559 |
COPD | 2(3.7) | 1(2.9) | 1.000 |
脑梗死 | 5(9.3) | 4(11.4) | 0.734 |
吸烟 | 13(24.1) | 7(20.0) | 0.653 |
饮酒 | 8(14.8) | 5(14.3) | 0.945 |
入院时指标 | |||
体温(℃) | 36.8(36.5-37.5) | 37.0(36.5-37.7) | 0.414 |
心率(次/min) | 96±21 | 94±18 | 0.867 |
平均动脉压(mmHg) | 93.8±16.5 | 87.7±12.3 | 0.066 |
呼吸频率(次/min) | 20(17-25) | 20(18-28) | 0.643 |
白细胞(×109/L) | 10.71(7.45-16.05) | 9.69(5.77-15.11) | 0.196 |
中性粒细胞(×109/L) | 8.78(5.87-13.70) | 7.85(5.17-11.95) | 0.176 |
淋巴细胞(×109/L) | 0.96(0.63-1.45) | 0.67(0.46-1.08) | 0.047 |
血红蛋白(g/L) | 115±27 | 117±23 | 0.613 |
红细胞比容 | 0.338±0.071 | 0.354±0.069 | 0.309 |
血小板,(×109/L) | 187(123-218) | 174(114-249) | 0.690 |
降钙素原(ng/mL) | 0.553(0.156-2.023) | 0.750(0.290-2.720) | 0.298 |
血ALT(U/L) | 62.3(32-87.9) | 38.0(31.6-63.9) | 0.142 |
血AST(U/L) | 41.5(27.6-95.2) | 58.3(34.2-84.4) | 0.253 |
血肌酐(μmol/L) | 69.0(48.6-102.6) | 91.8(63.4-116.0) | 0.013 |
血尿素氮(mmol/L) | 7.04(4.72-10.63) | 9.14(6.71-12.84) | 0.041 |
血钾(mmol/L) | 3.88±0.66 | 4.09±0.62 | 0.130 |
血钠(mmol/L) | 138.2±5.8 | 137.6±7.2 | 0.678 |
血氯(mmol/L) | 102.5±6.9 | 101.3±5.5 | 0.417 |
血钙(mmol/L) | 2.06±0.15 | 2.13±0.20 | 0.066 |
24 h内新发电解质紊乱(例,%) | |||
低钾血症 | 9(16.7) | 5(14.3) | 1.000 |
高钾血症 | 1(1.9) | 0(0) | 1.000 |
低钠血症 | 5(9.3) | 3(8.6) | 1.000 |
高钠血症 | 3(5.6) | 5(14.3) | 0.255 |
低氯血症 | 3(5.6) | 1(2.9) | 1.000 |
高氯血症 | 1(1.9) | 8(22.9) | 0.002 |
低钙血症 | 10(18.5) | 10(28.5) | 0.607 |
高钙血症 | 0(0) | 1(2.9) | 0.393 |
治疗(例,%) | |||
呼吸机依赖 | 30(55.6) | 29(82.9) | 0.008 |
血管活性药物 | 8(14.8) | 22(62.9) | 0.000 |
糖皮质激素 | 10(18.5) | 10(28.6) | 0.267 |
COPD:慢性阻塞性肺疾病 |
两组患者的年龄(P=0.008)、入院时淋巴细胞(P=0.047)、入院时血肌酐(P=0.013)、入院时尿素氮(P=0.041)、入ICU 24 h内新发高氯血症(P=0.002)、呼吸机依赖(P=0.008)、使用血管活性药物(P<0.001)间差异有统计学意义,见表 1。
2.2 入ICU后30 d病死率危险因素分析将存活组和死亡组中单因素分析差异有统计学意义的变量纳入二元logistic回归分析,结果如表 2所示。经校正后,年龄(OR=1.060,95%CI:1.018~1.104,P=0.005)、呼吸机依赖(OR=6.679,95%CI:1.218~36.620,P=0.029)、血管活性药物(OR=21.068,95%CI:4.654~95.376,P<0.001)、入ICU 24 h内新发高氯血症(OR=21.714,95%CI:1.059~445.008,P=0.046)为重症肺炎患者入ICU后30 d病死率的相关危险因素。而入院时淋巴细胞、入院时血肌酐、入ICU 24 h血肌酐变化、入ICU 24 h血尿素氮变化对重症肺炎患者入ICU后30 d病死率无明显影响(P>0.05)。
因素 | 粗OR 值 |
95%CI | P值 | 校正 OR值 |
95%CI | P值 |
年龄(岁) | 1.035 | 1.006-1.065 | 0.018 | 1.060 | 1.018-1.104 | 0.005 |
呼吸机依赖 | 3.867 | 1.380-10.830 | 0.010 | 6.679 | 1.218-36.620 | 0.029 |
血管活性药物 | 9.731 | 3.520-26.898 | <0.001 | 21.068 | 4.654-95.376 | <0.001 |
入院时淋巴细胞(109/L) | 0.875 | 0.565-1.357 | 0.552 | 1.002 | 0.603-1.665 | 0.993 |
入院时血肌酐(μmol/L) | 0.999 | 0.996-1.003 | 0.794 | 0.993 | 0.984-1.002 | 0.119 |
入院时血尿素氮(mmol/L) | 1.064 | 0.993-1.140 | 0.078 | 1.168 | 1.029-1.325 | 0.016 |
入ICU 24 h血肌酐变化(μmol/L) | 1.018 | 1.003-1.033 | 0.021 | 1.010 | 0.983-1.037 | 0.477 |
入ICU 24 h血尿素氮变化(mmol/L) | 1.099 | 1.002-1.205 | 0.045 | 1.053 | 0.917-1.210 | 0.463 |
入ICU 24 h新发高氯血症 | 15.704 | 1.866-132.129 | 0.011 | 21.714 | 1.059-445.008 | 0.046 |
PFB组和NFB组在入ICU后5 d内ALT、AST差异无统计学意义(P>0.05),见表 3。与PFB组比较,NFB组患者的入ICU后5 d内血肌酐及血尿素氮水平较低(P<0.05), 见表 3。
指标 | 液体正平衡组 | 液体负平衡组 | P值 |
ALT(U/L) | |||
D1 | 44.2(30.2~65.6)(n=48) | 45.2(16.7~80.3)(n=41) | 0.540 |
D2 | 43.1(22.3~73.7)(n=48) | 47.9(25.9~78.2)(n=41) | 0.730 |
D3 | 45.3(30.6~73.2)(n=47) | 45.0(29.7~75.2)(n=41) | 0.970 |
D4 | 39.3(32.2~69.7)(n=45) | 46.9(30.2~73.3)(n=40) | 0.531 |
D5 | 49.5(31.4~62.2)(n=43) | 45.7(31.9~65.0)(n=37) | 0.992 |
AST(U/L) | |||
D1 | 41.4(26.9~75.3)(n=48) | 40.2(25.8~100.4)(n=41) | 0.717 |
D2 | 43.1(28.2~78.2)(n=48) | 35.3(23.5~67.6)(n=41) | 0.202 |
D3 | 37.0(27.1~72.9)(n=47) | 33.2(23.5~58.2)(n=41) | 0.216 |
D4 | 35.9(27.1~66.7)(n=45) | 33.9(24.8~60.3)(n=40) | 0.349 |
D5 | 39.9(29.0~56.1)(n=43) | 33.6(22.8~53.7)(n=37) | 0.308 |
血肌酐(μmol/L) | |||
D1 | 80.6(59.5~136.9)(n=48) | 62.9(48.5~96.9)(n=41) | 0.042 |
D2 | 81.7(57.1~134.7)(n=48) | 70.4(46.9~84.5)(n=41) | 0.033 |
D3 | 83.1(50.4~136.5)(n=47) | 64.9(47.3~80.9)(n=41) | 0.026 |
D4 | 79.3(51.5~132.6)(n=45) | 59.0(42.4~80.4)(n=40) | 0.011 |
D5 | 77.2(54.1~133.2)(n=43) | 59.0(46.6~89.0)(n=37) | 0.046 |
血尿素氮(mmol/L) | |||
D1 | 12.24(8.51~16.96)(n=48) | 8.24(6.40~12.21)(n=41) | 0.001 |
D2 | 12.28(8.39~18.30)(n=48) | 8.23(6.26~12.05)(n=41) | 0.001 |
D3 | 13.38(9.54~22.72)(n=47) | 8.61(6.80~13.22)(n=41) | 0.002 |
D4 | 13.86(8.58~23.43)(n=45) | 9.21(6.92~13.91)(n=40) | 0.013 |
D5 | 14.72(9.20~24.57)(n=43) | 10.27(7.11~14.44)(n=37) | 0.008 |
ALT:谷丙转氨酶;AST:谷草转氨酶 |
PFB组和NFB组在入ICU后5 d内血钠浓度(D1:142.5±7.1 vs 137.8±5.2,P=0.001;D2:144.2±6.3 vs 139.2±5.5,P<0.001;D3:144.2±5.3 vs 144.2±5.3,P<0.001;D4:143.6±5.4 vs 140.3±6.0,P=0.008;D5:143.7±7.0 vs 139.1±5.0,P=0.001)及血氯浓度(D1:106.9±7.2 vs 101.9±5.2, P<0.001;D2:107.2±5.8 vs 101.4±5.3,P<0.001;D3:106.7±5.5 vs 101.5±5.0,P<0.001;D4:105.6±5.7 vs 101.0±5.4,P<0.001;D5:105.0±6.6 vs 101.1±4.6,P=0.003)均有统计学意义。PFB组和NFB组在D3-D5血钙浓度差异有统计学意义(D3:2.03±0.19 vs 2.14±0.20,P=0.008;D4:2.08±0.19 vs 2.18±0.22,P=0.026;D5:2.08±0.20 vs 2.19±0.19,P=0.009)。两组入ICU后5 d内血钾浓度差异无统计学意义。见表 4,图 1。
指标 | 液体正平衡组 | 液体负平衡组 | P值 |
血钾(mmol/L) | |||
D1 | 3.92±0.60(n=48) | 3.78±0.61(n=41) | 0.274 |
D2 | 3.82±0.60(n=48) | 3.74±0.58(n=41) | 0.545 |
D3 | 3.92±0.62(n=47) | 3.79±0.61(n=41) | 0.347 |
D4 | 3.90±0.67(n=45) | 4.00±0.64(n=40) | 0.503 |
D5 | 4.00±0.61(n=43) | 4.03±0.62(n=37) | 0.595 |
血钠(mmol/L) | |||
D1 | 142.5±7.1(n=48) | 137.8±5.2(n=41) | 0.001 |
D2 | 144.2±6.3(n=48) | 139.2±5.5(n=41) | <0.001 |
D3 | 144.2±5.3(n=47) | 139.8±4.5(n=41) | <0.001 |
D4 | 143.6±5.4(n=45) | 140.3±6.0(n=40) | 0.008 |
D5 | 143.7±7.0(n=43) | 139.1±5.0(n=37) | 0.001 |
血氯(mmol/L) | |||
D1 | 106.9±7.2(n=48) | 101.9±5.2(n=41) | <0.001 |
D2 | 107.2±5.8(n=48) | 101.4±5.3(n=41) | <0.001 |
D3 | 106.7±5.5(n=47) | 101.5±5.0(n=41) | <0.001 |
D4 | 105.6±5.7(n=45) | 101.0±5.4(n=40) | <0.001 |
D5 | 105.0±6.6(n=43) | 101.1±4.6(n=37) | 0.003 |
血钙(mmol/L) | |||
D1 | 2.03±0.20(n=48) | 2.03±0.15(n=48) | 0.876 |
D2 | 2.03±0.18(n=48) | 2.07±0.18(n=41) | 0.282 |
D3 | 2.03±0.19(n=47) | 2.14±0.20(n=41) | 0.008 |
D4 | 2.08±0.19(n=45) | 2.18±0.22(n=40) | 0.026 |
D5 | 2.08±0.20(n=43) | 2.19±0.19(n=37) | 0.009 |
![]() |
A:液体正平衡组和液体负平衡组患者入ICU后5 d(D1-5)血清钾离子浓度;B:液体正平衡组和液体负平衡组患者入ICU后5 d(D1-5)血清钠离子浓度;C:液体正平衡组和液体负平衡组患者入ICU后5 d(D1-5)血清氯离子浓度;D:液体正平衡组和液体负平衡组患者入ICU后5 d(D1-5)血清钙离子浓度(aP<0.05) 图 1 比较液体正平衡组和液体负平衡组患者入ICU后5 d(D1-5)血清电解质浓度 Fig 1 Comparison of serum electrolyte between the positive fluid balance and negative fluid balance group from day 1 to day 5 |
|
NFB组(n=41)患者入ICU后30 d生存率高于PFB组(n=48)(P<0.001),见图 2。
![]() |
图 2 液体正平衡组和液体负平衡组患者的Kaplan-Meier生存曲线 Fig 2 Kaplan-Meier survival curves of patients in the positive fluid balance and negative fluid balance group |
|
近年来,重症肺炎,特别是发生脓毒性休克的患者早期液体复苏治疗的认知正在发生变化。诚然,大量补液可以优化血流动力学,增加器官灌注[5],但是补液量难以精确把握,故大多演变成了过量补液。并且补液对于稳定脓毒性休克患者血流动力学的作用似乎被夸大了,现认为重症肺炎所致血流动力学障碍应归因于毒素相关的血管功能障碍以及血管麻痹[10-11],而输液的血流动力学效应较为短暂(通常为60 min)[12],故使用血管活性药物比补液更为重要。与此同时,持续性液体正平衡可导致液体超载,引起血管内静水压升高、心房利钠肽分泌增多[13]并破坏血管内皮上的多糖-蛋白质复合物屏障[4],造成组织间质水肿。
研究表明入院早期保持液体负平衡可降低患者病死率[14-16]。而本研究也发现入院72 h保持液体负平衡的重症肺炎患者入ICU 30 d病死率更低,究其原因,一如上述液体负平衡可避免间质水肿的发生;另一方面,本研究发现液体负平衡可减少重症肺炎患者疾病早期电解质紊乱(高钠血症、高氯血症、低钙血症)的发生,而入ICU 24 h内新发高氯血症为重症肺炎患者死亡的危险因素。动物实验发现细胞外氯离子可调控肾脏入球小动脉的舒缩[17],氯化物的增加会影响肾脏的血流[18-19]。在一项临床试验中发现,输注2 L生理盐水可降低健康志愿者核磁共振成像(MRI)测量的肾血流速度和肾皮质组织灌注[20]。综上,可以推断,早期液体正平衡可导致高氯血症,而高氯血症会促使肾脏入球动脉收缩、肾脏灌注减少。此外,液体正平衡可引起静脉回心血量增加、CVP增高,肾脏的后负荷增加,同样可引起肾脏灌注不足、肾功能的恶化。在本研究中依据入ICU后前3 d的出入量将患者分为PFB组和NFB组,考虑到入ICU后医师会根据实验室指标维持电解质平衡,故选择入ICU后5 d内的肝肾功能电解质以观察不同液体平衡策略对其变化趋势的影响。而我们观察到NFB组入ICU后5 d内的血肌酐及血尿素氮水平均显著低于PFB组。所以,有理由相信,液体负平衡可通过降低重症肺炎患者血氯浓度而改善患者肾功能,进而降低病死率。另外,通过图 1可见,相较于液体正平衡组,液体负平衡组患者在入ICU后血钠浓度较为平稳,并可提升血钙浓度。
临床常用生理盐水(0.9% NaCl溶液)溶解药物,其中大量的钠离子和氯离子可能会造成患者血电解质紊乱。而在输注生理盐水后血氯浓度的变化较血钠更为显著,一是因为初始血氯浓度低于初始血钠浓度,此外,在大分子电解质溶液中,因大离子不能透过半透膜,而原本可以自由透过半透膜的小粒子受大离子电荷影响,当渗透达到平衡时,膜两侧小离子浓度不相等,即吉布斯-唐南效应,其本质是不能透过半透膜的带电荷大分子物质产生了附加的渗透压,而血浆中由于蛋白等物质的存在,导致了小分子离子如Na+、Cl-的不均匀分布[21]。Acheampong等[22]发现脓毒症死亡组患者的液体摄入量要明显高于存活组,而两组患者的尿量并不存在明显差异。故实现重症肺炎患者液体负平衡应限制患者的入量,并减少生理盐水的输注。白蛋白可维持血管内胶体渗透压,结合并转运药物、毒素、促炎症分子和炎症介质[23],调节感染炎症反应[24],对抗氧化应激[25]。并且白蛋白不会损害肾脏或其他器官的功能,并且可降低死亡风险[26]。
本研究仍存在一定的局限性。⑴此为单中心的回顾性研究,样本量相对较小(n=89),入ICU 24 h内新发高氯血症共有9例,故未能行相关危险因素分析。⑵有研究表明液体超载百分比(FO%)≥10%可增加重症患者的病死率[27],而只有轻度的液体负平衡可降低重症患者的病死率[28],受限于样本量,未能根据FO%将患者进行分层分析。
综上所述,液体负平衡可降低重症肺炎患者血氯浓度、改善肾功能、降低病死率。
利益冲突 所有作者均声明不存在利益冲突
[1] | Wu C, Rosenfeld R, Clermont G. Using data-driven rules to predict mortality in severe community acquired pneumonia[J]. PLoS One, 2014, 9(4): e89053. DOI:10.1371/journal.pone.0089053 |
[2] | Walden AP, Clarke GM, McKechnie S, et al. Patients with community acquired pneumonia admitted to European intensive care units: an epidemiological survey of the GenOSept cohort[J]. Crit Care, 2014, 18(2): R58. DOI:10.1186/cc13812 |
[3] | Welte T, Torres A, Nathwani D. Clinical and economic burden of community-acquired pneumonia among adults in Europe[J]. Thorax, 2012, 67(1): 71-79. DOI:10.1136/thx.2009.129502 |
[4] | Myburgh JA, Mythen MG. Resuscitation fluids[J]. N Engl J Med, 2013, 369(13): 1243-1251. DOI:10.1056/nejmra1208627 |
[5] | Cecconi M, de Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine[J]. Intensive Care Med, 2014, 40(12): 1795-1815. DOI:10.1007/s00134-014-3525-z |
[6] | Li CL, Wang H, Liu N, et al. Early negative fluid balance is associated with lower mortality after cardiovascular surgery[J]. Perfusion, 2018, 33(8): 630-637. DOI:10.1177/0267659118780103 |
[7] | Almeida JP, Palomba H, Galas FRBG, et al. Positive fluid balance is associated with reduced survival in critically ill patients with cancer[J]. Acta Anaesthesiol Scand, 2012, 56(6): 712-717. DOI:10.1111/j.1399-6576.2012.02717.x |
[8] | Gist KM, Selewski DT, Brinton J, et al. Assessment of the independent and synergistic effects of fluid overload and acute kidney injury on outcomes of critically ill children[J]. Pediatr Crit Care Med, 2020, 21(2): 170-177. DOI:10.1097/pcc.0000000000002107 |
[9] | 中华医学会呼吸病学分会. 中国成人社区获得性肺炎诊断和治疗指南(2016年版)[J]. 中华结核和呼吸杂志, 2016, 39(4): 253-79. DOI:10.3760/cma.j.issn.1001-0939.2016.04.005 |
[10] | Huang XJ, Dai ZY, Cai L, et al. Endothelial p110γPI3K mediates endothelial regeneration and vascular repair after inflammatory vascular injury[J]. Circulation, 2016, 133(11): 1093-1103. DOI:10.1161/circulationaha.115.020918 |
[11] | Belletti A, Benedetto U, Biondi-Zoccai G, et al. The effect of vasoactive drugs on mortality in patients with severe Sepsis and septic shock. A network meta-analysis of randomized trials[J]. J Crit Care, 2017, 37: 91-98. DOI:10.1016/j.jcrc.2016.08.010 |
[12] | Nunes TSO, Ladeira RT, Bafi AT, et al. Duration of hemodynamic effects of crystalloids in patients with circulatory shock after initial resuscitation[J]. Ann Intensive Care, 2014, 4: 25. DOI:10.1186/s13613-014-0025-9 |
[13] | Bruegger D, Jacob M, Rehm M, et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of Guinea pig hearts[J]. Am J Physiol - Heart Circ Physiol, 2005, 289(5): H1993-H1999. DOI:10.1152/ajpheart.00218.2005 |
[14] | Chao WC, Tseng CH, Chien YC, et al. Association of day 4 cumulative fluid balance with mortality in critically ill patients with influenza: a multicenter retrospective cohort study in Taiwan[J]. PLoS One, 2018, 13(1): e0190952. DOI:10.1371/journal.pone.0190952 |
[15] | Shen YF, Huang XM, Zhang WM. Association between fluid intake and mortality in critically ill patients with negative fluid balance: a retrospective cohort study[J]. Crit Care, 2017, 21: 104. DOI:10.1186/s13054-017-1692-3 |
[16] | de Oliveira FSV, Freitas FGR, Ferreira EM, et al. Positive fluid balance as a prognostic factor for mortality and acute kidney injury in severe Sepsis and septic shock[J]. J Crit Care, 2015, 30(1): 97-101. DOI:10.1016/j.jcrc.2014.09.002 |
[17] | Hansen PB, Jensen BL, Skøtt O. Chloride regulates afferent arteriolar contraction in response to depolarization[J]. Hypertension, 1998, 32(6): 1066-1070. DOI:10.1161/01.hyp.32.6.1066 |
[18] | Wilcox CS. Regulation of renal blood flow by plasma chloride[J]. J Clin Invest, 1983, 71(3): 726-735. DOI:10.1172/jci110820 |
[19] | Imig JD, Passmore JC, Anderson GL, et al. Chloride alters renal blood flow autoregulation in deoxycorticosterone-treated rats[J]. J Lab Clin Med, 1993, 121(4): 608-613. |
[20] | Chowdhury AH, Cox EF, Francis ST, et al. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte? 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers[J]. Ann Surg, 2012, 256(1): 18-24. DOI:10.1097/sla.0b013e318256be72 |
[21] | Guidet B, Soni N, Rocca G, et al. A balanced view of balanced solutions[J]. Crit Care, 2010, 14(5): 325. DOI:10.1186/cc9230 |
[22] | Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with Sepsis[J]. Crit Care, 2015, 19: 251. DOI:10.1186/s13054-015-0970-1 |
[23] | Artigas A, Wernerman J, Arroyo V, et al. Role of albumin in diseases associated with severe systemic inflammation: Pathophysiologic and clinical evidence in Sepsis and in decompensated cirrhosis[J]. J Crit Care, 2016, 33: 62-70. DOI:10.1016/j.jcrc.2015.12.019 |
[24] | Esparza GA, Teghanemt A, Zhang DS, et al. Endotoxin·albumin complexes transfer endotoxin monomers to MD-2 resulting in activation of TLR4[J]. Innate Immun, 2012, 18(3): 478-491. DOI:10.1177/1753425911422723 |
[25] |
Ata |
[26] | Investigators TSS. Impact of albumin compared to saline on organ function and mortality of patients with severe Sepsis[J]. Intensive Care Med, 2011, 37(1): 86-96. DOI:10.1007/s00134-010-2039-6 |
[27] | Flythe JE, Kimmel SE, Brunelli SM. Rapid fluid removal during Dialysis is associated with cardiovascular morbidity and mortality[J]. Kidney Int, 2011, 79(2): 250-257. DOI:10.1038/ki.2010.383 |
[28] | Shen YF, Huang XM, Zhang WM. Association between fluid intake and mortality in critically ill patients with negative fluid balance: a retrospective cohort study[J]. Crit Care, 2017, 21: 104. DOI:10.1186/s13054-017-1692-3 |