中华急诊医学杂志  2020, Vol. 29 Issue (10): 1265-1272   DOI: 10.3760/cma.j.issn.1671-0282.2020.10.001
急危重症患者与营养治疗
王烁 , 郭树彬 , 何新华     
北京市心肺脑复苏重点实验室,首都医科大学附属北京朝阳医院急诊医学临床研究中心, 100020

现代医疗技术的飞速发展,促推了救治技术的进步。低温治疗、呼吸支持、肾脏替代等治疗以及新药研发与使用,让更多以前生存希望渺茫的急危重症患者存活下来,逐年降低了住院和急救病死率[1]。这些从急诊抢救室和重症监护室(intensive care unit,ICU)存活下来的患者,回归有质量的生活越来越艰难,大多因各种原因无法回归到发病前生活,而是在医院或者护理院继续治疗和康复,或者多次往返急诊科救治[2],面临着严重、持续的器官功能减退和障碍[2-3]。为了改善患者器官功能和生活质量,营养治疗作为快速可选择方式,始终贯穿从ICU到康复阶段的全过程。现就急危重病患者营养治疗的相关话题分述如下。

1 急危重症患者肠道屏障

肠道是人体质量要脏器,正常情况下经口摄入的营养物质通过胃肠道消化吸收以满足机体之需。同时,肠道还通过自身多种机制,抵御外来病源微生物侵犯,构成一道稳定防线,即肠道屏障。肠道屏障功能的维护,有赖其微生物屏障、黏液屏障、上皮屏障和免疫屏障的良好协同作用。当机体受到创伤、重症感染、烧伤等严重打击处于急危重症状态时,导致内脏低灌注或者缺血、缺血-再灌注损伤。损伤后出现的肠道屏障功能障碍,使得肠道菌群易位以及毒素经受损肠道进入血液循环。肠道受损,直接影响到营养治疗实施,最终影响到疾病转归[4]。低剂量,不能达到标准预测剂量的EN(enteral nutrition)治疗所取得临床效果的喂养被称之为滋养型喂养。滋养型喂养作为一种营养支持治疗策略,能防止黏膜的萎缩,给予患者允许性低热卡EN治疗,虽不能显著改善患者的临床预后,但却具有良好的胃肠耐受性,维护肠道黏膜屏障功能的完好,为胃肠耐受性差的患者带来福音。因此,屏障功能障碍使肠内营养实施面临挑战,反过来肠内营养又对屏障功能维护益处多多。

2 急危重症患者病理生理

急危重病患者病情演变阶段难以准确界定,2019年ESPEN(European Society of Parenteral and Enteral Nutrition, 欧洲肠外和肠内营养协会)指南将急危重症分为三个阶段:急性早期(ICU第1~2天),急性晚期(ICU第3~7天),和恢复期(ICU第7天后)。前两个阶段以分解代谢为主;后一个阶段以合成代谢为主[5]。急性期患者处于分解代谢状态,又称自噬现象。无论创伤、感染还是休克,通过细胞因子产生增加(IL1、2、6、8、TNF)、交感神经高度兴奋(儿茶酚胺大量释放)、促分解代谢激素分泌大于合成激素分泌(糖皮质激素、胰高血糖素和甲状腺素等)三个途径,出现高分解代谢状态(分解代谢>合成代谢),表现为糖原分解加速,糖异生增强;骨骼肌蛋白和细胞结构蛋白分解加速;脂肪动员加速,游离脂肪酸氧化。最终出现强制性高代谢状态,即自噬现象。自噬现象使人体蛋白分解,产生更多的氨基酸;部分通过三羧酸循环产生ATP,部分通过肝脏合成急性相蛋白以弥补蛋白摄入不足[6-7]。此时,急危重症患者胃肠功能损伤表现为肠屏障功能障碍、消化吸收功能障碍和运动功能障碍。血清内毒素、二胺氧化镁(DAO)和D-乳酸均显著升高,提示肠道屏障功能严重受损[8]。一项前瞻性横断面研究,排除原发性EPI(exocrine pancreatic insufficiency, 胰腺内分泌功能不全),563例重症患者中52.2%存在EPI(粪弹性蛋白酶-1 < 200 μg/g),18.3%存在严重EPI(粪弹性蛋白酶-1 < 100 μg/g),严重影响消化吸收能力,导致脂肪吸收明显下降[9]。急危重症患者还可出现胃窦收缩消失、幽门管关闭,导致胃排空障碍、反流误吸[10]。77%烧伤、72%多发性创伤、67%颅脑创伤、61%脓毒症、33%非胃肠术后呼吸衰竭、27%心脏损伤的患者均可出现以上现象。虽然由于原发病不同,胃排空障碍发生率略有差异,但都很严重,均数可以达到60%[11]。胃肠屏障功能损伤可以持续很长时间,入院第7天仍高达85%,其中AGI(acute gastrointestinal injury, 急性胃肠功能损伤)二级以上者近60%[12-13]

3 急危重症患者营养治疗

危重病营养治疗,有众多指南推荐[5, 14-16]。通过EN途径实施早期积极营养治疗(EEN, early entral nutrition)是降低疾病严重程度、减少并发症、缩短ICU住院时间以及改善患者预后的积极策略。4640例综合ICU患者(其中心脏手术患者2 818例,占61%),研究组首先接受EN,之后继予PN(parenteral nutrition, 肠外营养)(在ICU第8天),与对照组48 h之内开始PN相比,前者增加了出院存活率和较早离开ICU和出院几率(HR1.06,95%CI 1.00~1.13;P=0.04)。延迟进行PN降低了感染并发症的发生(22.8% vs 26.2%,P=0.008)、胆汁淤积、机械通气时间、肾替代治疗时间和治疗花费[17]。在增强EN与标准EN的TARGET研究中,在急危重病早期,与标准EN治疗相比,增强EN没有改善临床结果。而且,在给予50%能量[30 kcal/kg(理想体质量)/d],不影响到病死率或者其他临床结果[18]。与标准喂养相比,对危重病患者早期给予一段时间的低热卡(低能量和适当蛋白质)和滋养性喂养(低能量和低蛋白),二者并没有差异性[19-20]。虽然不同研究结果有一定差异,但不难发现,在危重病急性早期和急性晚期,EEN受益明显;而且在这个时期,给予<100%目标能量更为有益。

3.1 ICU/急诊抢救室期间营养治疗 3.1.1 EEN

EEN明显优于延迟EN和早期PN。危重病患者应该在48 h内,甚至24 h内开始EEN,除非有延迟EN的原因。因为EEN能够降低感染风险,同时保护肠道功能,包括免疫功能和吸收能力等。下列情况应该延迟EN:肠梗阻,因为在梗阻的近端喂养,将会导致肠腔扩张甚至穿孔;存在不可控制的休克导致内脏循环障碍、肠腔缺血显著;腹腔间歇综合征(abdominal compartment syndrome,ACS)和喂养后增加腹腔内压力出现腹腔内高压;高输出瘘没有得到旁路控制;肠道活动性出血;胃肠潴留量>500 mL/6 h[5, 21]

3.1.2 热卡需求

对于危重病患者,决定能量需求是艰难挑战,因为目标能量需求决定了营养治疗供给。在危重病早期营养治疗时,要考虑内源性能量产生,选择渐进性能量补充以防过度喂养发生[22]。预测公式是临床上最常用的能量需求计算方法,优点是方便,但是与间接热卡测量法相比,准确性偏低[23]。但是,预测公式还是在临床广泛使用,并且在缺乏间接热卡测量时,得到多个指南推荐[5, 14]。因此,推荐间接热卡测量法测量急危重症患者能量消耗[5]。Zusman和Weijs发现能量摄入与病死率的U型关系,建议给予测量能量消耗的70%~80%比较合适,过高或者过低的摄入都可能增加病死率[24-25]。当不能进行间接热卡测量法时,ESPEN 2019指南推荐静息能量消耗(resting energy expenditure,REE)法[5],即通过计算呼吸排出的CO2的量,用Weir公式计算,即REE=VCO2×8.19[26-28]。应该避免早期过渡喂养,在蛋白摄入相似的情况下,低热卡或者正常热卡喂养对患者预后的结果不会产生很大的差异。TARGET和EAT-ICU研究证实,积极、过量早期热卡补充带来的首要问题是高血糖症,需要大剂量胰岛素治疗[18, 29]。在ICU第一周,比预测能量低20%~30%是允许的,但应该避免更长时间的能量缺陷。

3.1.3 蛋白质摄入 3.1.3.1 急危重症蛋白质作用

ICU住院患者肌肉质量,是内源性氨基酸的源泉,对危重病患者转归有积极作用[30]。文献报道因MODS入住ICU的患者,在最开始的10 d时间内,分解代谢显著增强,每天可减少肌肉质量1kg[31]。大剂量蛋白补充有利于肌肉丢失的改善和肌肉蛋白合成[32]。大量观察性研究证实,与低剂量蛋白摄入相比,更多蛋白摄入,可以降低发病率和病死率[24, 33-35],甚至还能改善患者存活率[34-37]。但在一些RCT研究中,与相对低剂量蛋白输注比较,增加蛋白输注没有更多的获益[29, 38-39]。然而,有关加强蛋白补充的高质量RCTs研究不多,现有的一些RCTs结果差强人意甚至是负面作用[29, 38, 40]。因此,还需要有更多证据证实蛋白质摄入的作用[41]

ASPEN/SCCM(American Society of Parenteral and Enteral Nutrition/Society of Critical Care Medicine, 美国肠外和肠内营养协会/重症医学监护协会))指南推荐1.2~2.0 g/(kg·d)的较高蛋白输注,特别是在烧伤、肥胖以及多发创伤患者[14]。当选择24 h氮平衡作为评价终点时,也有超过2.0 g/(kg·d)的建议[42]。然而,在一些前瞻随机研究报道中,超过1.2 g/(kg·d)的蛋白摄入,没有改善氮平衡(7 d评价),也没有改善以患者为中心的相关结果[29, 43]。因此,蛋白输注还需在合适的剂量下,个体化选择。

3.1.3.2 摄入蛋白质时间

蛋白输注时间也可能影响到临床结果。两个观察性研究报告,在早期(第3~4天)输注蛋白,能提高生存率[35-36]。纳入2 253例患者,早期蛋白输注[>0.7 g/(kg·d)vs<0.7 g/(kg·d)],增加存活率(调整HR,0.83,95%CI 0.71~0.97,P=0.017)[36]。但也有一些研究报道与此不一致。一项单中心回顾队列研究纳入455例患者,在第3天前摄入<0.8 g/(kg·d)和高蛋白摄入[>0.8 g/(kg·d)]第3天后,与高蛋白摄入相比,低蛋白摄入能降低6个月病死率(调整HR 0.609,95%CI 0.489~0.772,P<0.001)[44]。基于有限的证据和不伤害到患者目的,推荐逐渐给予蛋白至1.3 g/(kg·d)并达标是合适的[5, 45]。为了达到高蛋白摄入又不至于造成过度喂养,推荐蛋白测算流程如下:用间接热卡测量患者热卡需求,减去非营养性热卡,计算每天最大热卡需求(避免过渡喂养),选择高蛋白能量比例的EN,监测实际摄入的蛋白,增加EN的蛋白补充(避免大量EN喂养)。入住ICU的第4~7天,当有EN禁忌证时,应肠外氨基酸补充[5, 14, 46-47]

3.1.4 微量元素与特殊营养

应补充微量元素以满足个体化的营养需求,特别是对那些并不经济的微量元素。微量元素的补充应确保每天的必须,但必须与大剂量摄入微量元素(比如药理剂量)有所区别。因为大量RCT证实药理剂量微量元素治疗没有获益[48]。使用免疫增强成分的特殊营养,比如谷氨酰胺和鱼油,对发病率和病死率影响的争议未停[49-51]。但最近一篇荟萃分析纳入49篇RCT研究。与标准PN组相比,富含ω-3脂肪乳的PN组,感染相对风险下降40%(24 RCT,RR0.6,95%CI 0.49~0.72;P<0.01);缩短ICU住院时间1.95 d(10 RCT,95%CI 0.42~3.49,P=0.01);缩短住院时间2.14 d(26 RCT,95%CI 1.36~2.93,P<0.01);脓毒症风险降低56%(9 RCT,RR 0.44,95%CI 0.28~0.70,P=0.0004)。16个RCT研究显示病死率降低16%,但没有统计学意义(RR0.84,95%CI 0.65~1.07,P=0.15)。荟萃分析结论,富含ω-3脂肪乳的PN是有益的,能降低40%感染风险和50%脓毒症风险,缩短ICU住院时间和总住院时间2 d。对于有PN适应证的患者,富含ω-3脂肪乳剂优于标准脂肪乳剂[52]

3.2 ICU/急诊抢救室后住院期间营养治疗

指南对于离开ICU/急救抢救室之后住院期间患者,没有合适的能量需求和蛋白摄入推荐。然而,合理热卡和蛋白摄入是必须的,以增加功能性肌肉质量的恢复和防止进一步的丢失。文献提示这个阶段代谢需求显著增加,总能量消耗可达REE的1.7倍。在脓毒症患者的第二周,总能量消耗达到3 250 kcal/d或者47 kcal/(kg·d)。在年轻创伤患者,在创伤后第2周,其总能量消耗甚至高达4 120 kcal/d或者59 kcal/(kg·d)53]。现实情况是,离开ICU后的患者,平均自主经口摄入热卡为700 kcal/d,在整个离开ICU后的住院期间,其热卡和蛋白的摄入量达不到需求量的50%[54]。一项队列研究,每天摄入2 000 kcal热量和112 g蛋白,仅达到总热卡的62%和蛋白需求的54%[55]。那些单纯经口营养而且没有经口营养补充(oral nutritional supplements,ONS)患者,摄入总量仅仅达标40%。特别是拔除鼻胃管喂养的患者,摄入热卡总量和蛋白总量均显著降低。虽然在出ICU后患者营养和蛋白没有准确的目标值,但考虑到患者普遍年龄偏大,而且他们中绝大多数体质很脆弱,推定需要较高的蛋白需求,摄入蛋白量为1.5~2.5 g/(kg·d)[56]

4 营养途径 4.1 EN 4.1.1 EN开始时间

在急危重病状态下,即使肠屏障功能受到一定程度损害,维持肠道正常结构和功能最好方式还是EN,可以增强肠道的紧密连接功能及微生态平衡[57]。在24~48 h内启动EEN,有利于促进肠道功能恢复,维护肠屏障功能、减少菌群易位,发挥代谢支持和代谢调理作用[14, 58]。共计18个RCT研究的荟萃分析(纳入3 347患者)发现,与PN相比,EN虽然没有降低病死率(RR 1.04, 95 % CI 0.82, 1.33, P = 0.75,heterogeneity I2 = 11 %),但降低感染并发症的发生(RR 0.64, 95 % CI 0.48, 0.87,P = 0.004,heterogeneity I2 = 47 %)和ICU住院时间(WMD-0.80, 95 % CI-1.23, -0.37,P = 0.0003) [59]。ESICM(European Society of Intensive Care Medicine, 欧洲重症医学会)临床实践指南列举了包括不同患者群的5个荟萃分析,分别是不分病种的危重病患者、脑部创伤患者、急性重型胰腺炎、胃肠损伤和腹部创伤。与延迟EN(>48 h EN)比较,EEN(入院<48 h内EN)在不分病种、急性重型胰腺炎和胃肠手术患者中能降低感染发生。没有发现早期PN或者延迟EN优于EEN的证据。因此,ESICM建议对大多数危重病患者实施EEN。对于为没有控制的休克、没有控制的低氧血症和酸中毒、没有控制的上消化道大出血、胃潴留>500 mL/6 h、肠缺血和肠梗阻、腹腔间隙综合征、无远端喂养路径的高输出量瘘,选择延迟EN[15]。Shi等荟萃分析符合标准的8个RCTs研究,总共纳入5 360例患者。与PN+EN组相比,单纯EN组呼吸道感染降低(RR1.33,95%CI 1.01~1.25)和在院时间缩短(MD,1.83,95%CI 1.05~2.62)。但住院期间病死率、ICU住院时间、机械通气时间、白蛋白和前白蛋白在两组之间没有差别[60]。由此,EEN方案(入ICU<48 h)获得推荐[5, 14-16]

4.1.2 EN途径

在ICU最常见EN途径是鼻胃管管饲。推荐弹丸式给予,因为符合生理过程,优于持续喂养[61]。有几个小型前瞻研究,纳入236例患者,与持续EN相比,弹丸式EN发生腹泻的比例略高(RR 0.42,95%CI 0.19~0.91,P=0.03);但胃潴留、误吸发生率或者肺炎等均没有差异[5]。从持续泵入到弹丸式给予的转变,需要在ICU/急诊科医护人员中进行宣教并写入到喂养流程中。在EN喂养中,临床医师们需要考虑有循证证据的喂养流程,幽门后喂养、胃肠动力药使用,以及对胃潴留量等[62-66]。EEN以10~20 mL/h速度输注,仔细监测胃肠道症状。若既往出现的胃肠道症状缓解,没有新的症状出现,可缓慢增加EN速度。当出现不耐受或者新的症状,比如疼痛、腹胀或者腹内压增加时,不增加EN速度。当症状比较严重或者怀疑有肠系膜缺血性病变时应停止EN。

4.1.3 监测

患者合并严重腹部疾病、低灌注或者液体超负荷的情况下EN,需要监测腹腔内压力,根据其数值的高低来了解肠腔动力情况以决定EN的速度[67]。当然,恶心、呕吐、腹泻等消化道症状以及腹胀、腹痛等也是观察之列。每天监测患者对肠内营养的耐受性(胃残余量、呕吐、腹胀、腹泻等),但不应将GRV(gastric residual volume, 胃残余量)作为患者是否耐受EN的唯一标准;正在监测GRV的患者,如果GRV<500 mL/6 h且没有其他不耐受表现,应避免停用EN。同时不要因患者发生腹泻而自动中止EN,而应在继续喂养的同时查找腹泻的病因以便给予适当的治疗。针对患者EN过程中易发生误吸风险,应评估接受EN患者的误吸风险,并应积极采用降低误吸和吸入性肺炎风险的措施。在误吸风险高的患者中,可选择促胃动力药物治疗和或者幽门后置管喂养。

4.2 PN

当病情严重到一定程度,比如血流动力学不稳定,严重心力衰竭等,甚至出现严重AGI,肠道不能胜任EN时,PN是合适的选择。通过非胃肠形式,提供机体全营养素需求或者额外营养要素补充(当口服或者EN不能满足时),是确保急危重症患者恢复的强大基础。但是,较长时间PN带来的风险逐渐增加,比如肠非特异性炎症、肠通透性损伤致菌群易位、原发性和继发性胆管炎、肝胆循环障碍等。有研究证实,PN持续72 h后黏膜血管细胞附着分子1  (mucosal vascular addressin cell adhesion molecule 1 ,MAdCAM-1)和淋巴细胞水平明显降低,当给予EN之后上述指标均有不同程度改善,并在48 h后恢复到初始水平[68]。研究表明,PN导致的肠黏膜溶菌酶和肠黏膜黏蛋白水平下降均能通过40%目标剂量的EN来纠正,甚至20%目标剂量的EN也可逆转PN所致的肠黏膜碱性磷酸酶的下降。因此,认为40%目标剂量的EN是逆转PN诱导的肠黏膜损伤的理想剂量[69]。及时密切的肠功能评价,尽快过渡到EN是必要的选择。

4.3 SPN

荟萃分析和ESPEN2019年指南不推荐危重病患者在入住ICU的3~7 d内开始SPN(supplemental parenteral nutrition,SPN)。当患者有延迟EN和高营养风险时,应该考虑早期PN[5, 14, 54]

5 再喂养综合征和低磷血症

再喂养综合征(refeeding syndrome, RFS)是源于一段时间饥饿或者禁食,当恢复喂养后机体出现的一种代谢紊乱综合征,最早描述见于第二次世界大战后被解放的监狱犯人恢复饮食后[70]。主要表现是体内生化指标的异常和水电解质失衡,比如低钾血症、低镁血症和低磷血症等。其中胰岛素诱导的糖酵解增加可以导致显著的低磷血症。对于ICU患者,最好的定义是开始营养治疗72 h之后,出现低磷血症(血鳞<0.65 mmol/L),即定义为RFS。研究证实,在最开始的2~3 d内给予500 kcal/d或者不到50%目标能量需求,是预防源于RFS导致的病死率增加的基础[70-71]。RFS治疗包括密切监测和纠正液体失衡、低磷和其他电解质紊乱以及补充硫铵素等[70]

6 营养监测

虽然在营养治疗过程中没有相关监测指标影响临床结果的研究,但是,临床观察、实验室参数(血糖、电解质、甘油三酯、肝功能等)和能量消耗、身体状况还是需要监测,以便预防和及早探测营养相关的并发症[72]。患者体质量和肌肉依然是评价营养状况的重要指标以及开展营养干预的有效监测指标[73]。由于危重病患者体液广泛转移,传统的测量体质量和肌肉的方法,如体格检查、上臂中段肌肉周径准确性不高[74-75],CT、生物阻抗分析以及超声等技术,是未来重要的评估手段[76-77]。常用的营养状况监测评价方法包括用来确定营养风险的NRS 2002(Nutritional risk screening 2002)量表[78],用来确定营养不良的通用筛查工具MUST(Malnutrition universal screening tool)[79]、微营养评价简表MNA-SF[80]和改良NUTRIC(modified Nutrition Risk in Critically)等[81]。从简洁快速而有比较准确的角度,在急诊科特别是急诊留观病房,推荐NRS2002量表,EICU推荐NUTRIC量表。

7 小结

急危重症患者是一个庞大的群体,病因不同,其病理生理差异性很大,但疾病对肠功能的影响是一致的。在评估AGI等级之后,个体化选择合适的营养治疗是急危重症转归的重要保障。以下面这个急危重病患者营养评价与营养治疗表(表 1),作为本文的结束[82]

表 1 危重病患者各期营养状态及营养治疗。
  评价方式a
营养合适或者中度营养不良 严重营养不良
急性早期
ICU1~2 d
■考虑EN
■不使用PN
■EN目标:<70%预估或者测量值b
■蛋白目标:按照能量需求目标给予蛋白剂量
■按照营养合适标准给予治疗
■密切观察是否RFS,特别是低磷血症
■如果血磷降低,在逐渐增加能量至达标之前,替换和保持能量目标<50%需求目标,并持续2~3 d
急性晚期
ICU3~7 d
■给予EN
■考虑PN,如果EN有禁忌证或者不充分(个性化分析)
■能量目标:70%预估值或者80%~100%测量值b
■蛋白目标:逐渐增加至1.3g/(kg·d)c
■给予EN
■如果EN禁忌或者不充分,从小剂量开始并逐渐增加PN
■能量目标:70%预估或者80%~100%测量值b
■蛋白目标:逐渐增加至1.3 g/(kg·d)
■持续观察是否RFS。
恢复期
ICU7 d以上
■给予EN
■开始PN,如果EN禁忌或不充分(个性化分析)
■能量目标:80%~100%预估或者测量值(按照间接测量法)
■蛋白目标:至少1.3 g/(kg·d)c
a:营养评估:当地医院评估表格或者GLIM(Global leadership initiative on malnutrition criteria);
b:间接热卡测量法(IC);
c:对BMI>30 kg/m2的肥胖患者适应预估方程来进行体质量调整。

利益冲突  所有作者均声明不存在利益冲突

参考文献
[1] Kaukonen KM, Bailey M, Suzuki S, et al. Mortality related to severe Sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012[J]. JAMA, 2014, 311(13): 1308. DOI:10.1001/jama.2014.2637
[2] Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness[J]. N Engl J Med, 2014, 370(17): 1626-1635. DOI:10.1056/nejmra1209390
[3] Hopkins RO, Suchyta MR, Kamdar BB, et al. Instrumental activities of daily living after critical illness: a systematic review[J]. Annals ATS, 2017, 14(8): 1332-1343. DOI:10.1513/annalsats.201701-059sr
[4] 米玉红. 肠屏障功能与危重症患者早期肠内营养的必要性[J]. 中华急诊医学杂志, 2020, 29(4): 447-455. DOI:10.3760/cma.j.issn.1671-0282.2020.04.002
[5] Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit[J]. Clin Nutr, 2019, 38(1): 48-79. DOI:10.1016/j.clnu.2018.08.037
[6] 黎介寿. 应激患者的代谢与营养支持[J]. 外科理论与实践杂志, 2000, 2: 70-72. R459.3.
[7] Kim KH, Lee MS. Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism[J]. Rev Endocr Metab Disord, 2014, 15(1): 11-20. DOI:10.1007/s11154-013-9272-6
[8] Guo YY, Liu ML, He XD, et al. Functional changes of intestinal mucosal barrier in surgically critical patients[J]. World J Emerg Med, 2010, 1(3): 205-208.
[9] Wang S, Ma LJ, Zhuang YG, et al. Screening and risk factors of exocrine pancreatic insufficiency in critically ill adult patients receiving enteral nutrition[J]. Crit Care, 2013, 17(4): R171. DOI:10.1186/cc12850
[10] Chapman M. Antro-pyloro-duodenal motor responses to gastric and duodenal nutrient in critically ill patients[J]. Gut, 2005, 54(10): 1384-1390. DOI:10.1136/gut.2005.065672
[11] Nguyen NQ, Mei PN, Chapman M, et al. The impact of admission diagnosis on gastric emptying in critically ill patients[J]. Crit Care, 2007, 11(1): R16. DOI:10.1186/cc5685
[12] 呼邦传, 孙仁华, 吴爱萍. 急性胃肠损伤分级系统对重症患者适应性及临床预后的评估[J]. 中华医学杂志, 2017, 97(5): 325-331. DOI:10.3760/cma.j.issn.0376-2491.2017.05.002
[13] Hu BC, Sun RH, Wu AP, et al. Severity of acute gastrointestinal injury grade is a predictor of all-cause mortality in critically ill patients: a multicenter, prospective, observational study[J]. Crit Care, 2017, 21: 188. DOI:10.1186/s13054-017-1780-4
[14] McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient[J]. JPEN J Parenter Enteral Nutr, 2016, 40(2): 159-211. DOI:10.1177/0148607115621863
[15] Reintam Blaser A, on Gastrointestinal Function EWG, Starkopf J, et al. Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines[J]. Intensive Care Med, 2017, 43(3): 380-398. DOI:10.1007/s00134-016-4665-0
[16] Critical Care Nutrition. The Canadian clinical practice guidelines (2015)[EB/OL]. Available from: http://www.criticalcarenutrition.com [Accessed 24 Jul 2019].
[17] Casaer MP, Mesotten D, Hermans G, et al. Early versus late parenteral nutrition in critically ill adults[J]. N Engl J Med, 2011, 365(6): 506-517. DOI:10.1056/nejmoa1102662
[18] for the ANZICS Clinical Trials Group TTI. Energy-dense versus routine enteral nutrition in the critically ill[J]. N Engl J Med, 2018, 379(19): 1823-1834. DOI:10.1056/nejmoa1811687
[19] Rice TW, Wheeler AP, Thompson BT, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial[J]. JAMA, 2012, 307(8): 795-803. DOI:10.1001/jama.2012.137. 
[20] Arabi YM, Aldawood AS, Haddad SH, et al. Permissive underfeeding or standard enteral feeding in critically ill adults[J]. N Engl J Med, 2015, 372(25): 2398-2408. DOI:10.1056/nejmoa1502826
[21] RidLey EJ, Parke RL, Davies AR, et al. What happens to nutrition intake in the post-intensive care unit hospitalization period? an observational cohort study in critically ill adults[J]. J Parenter Enter Nutr, 2019, 43(1): 88-95. DOI:10.1002/jpen.1196
[22] Fraipont V, Preiser JC. Energy estimation and measurement in critically ill patients[J]. JPEN J Parenter Enteral Nutr, 2013, 37(6): 705-713. DOI:10.1177/0148607113505868
[23] Tatucu-Babet OA, RidLey EJ, Tierney AC. Prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry[J]. JPEN J Parenter Enteral Nutr, 2016, 40(2): 212-225. DOI:10.1177/0148607114567898
[24] Zusman O, Theilla M, Cohen J, et al. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study[J]. Crit Care, 2016, 20: 367. DOI:10.1186/s13054-016-1538-4
[25] Weijs PJ, Looijaard WG, Beishuizen A, et al. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients[J]. Crit Care, 2014, 18(6): 701. DOI:10.1186/s13054-014-0701-z
[26] Kagan I, Zusman O, Bendavid I, et al. Validation of carbon dioxide production (VCO2) as a tool to calculate resting energy expenditure (REE) in mechanically ventilated critically ill patients: a retrospective observational study[J]. Crit Care, 2018, 22: 186. DOI:10.1186/s13054-018-2108-8
[27] Stapel SN, de Grooth HJS, Alimohamad H, et al. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept[J]. Crit Care, 2015, 19: 370. DOI:10.1186/s13054-015-1087-2
[28] Flancbaum L, Choban PS, Sambucco S, et al. Comparison of indirect calorimetry, the Fick method, and prediction equations in estimating the energy requirements of critically ill patients[J]. Am J Clin Nutr, 1999, 69(3): 461-466. DOI:10.1093/ajcn/69.3.461
[29] Allingstrup MJ, Kondrup J, Wiis J, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome Assessor-blinded EAT-ICU trial[J]. Intensive Care Med, 2017, 43(11): 1637-1647. DOI:10.1007/s00134-017-4880-3
[30] Weijs PJ, Looijaard WG, Dekker IM, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients[J]. Crit Care, 2014, 18(1): R12. DOI:10.1186/cc13189
[31] Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness[J]. JAMA, 2013, 310(15): 1591. DOI:10.1001/jama.2013.278481
[32] van Zanten ARH. Should we increase protein delivery during critical illness?[J]. JPEN J Parenter Enteral Nutr, 2016, 40(6): 756-762. DOI:10.1177/0148607115626905
[33] Nicolo M, Heyland DK, Chittams J, et al. Clinical outcomes related to protein delivery in a critically ill population[J]. JPEN J Parenter Enteral Nutr, 2016, 40(1): 45-51. DOI:10.1177/0148607115583675
[34] Compher C, Chittams J, Sammarco T, et al. Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients[J]. Crit Care Med, 2017, 45(2): 156-163. DOI:10.1097/ccm.0000000000002083
[35] Weijs PJ, Looijaard WG, Beishuizen A, et al. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients[J]. Crit Care, 2014, 18(6): 701. DOI:10.1186/s13054-014-0701-z
[36] Bendavid I, Zusman O, Kagan I, et al. Early administration of protein in critically ill patients: a retrospective cohort study[J]. Nutrients, 2019, 11(1): 106. DOI:10.3390/nu11010106
[37] Nicolo M, Heyland DK, Chittams J, et al. Clinical outcomes related to protein delivery in a critically ill population[J]. JPEN J Parenter Enteral Nutr, 2016, 40(1): 45-51. DOI:10.1177/0148607115583675
[38] Ferrie S, Allman-Farinelli M, Daley M, et al. Protein requirements in the critically ill[J]. JPEN J Parenter Enteral Nutr, 2016, 40(6): 795-805. DOI:10.1177/0148607115618449
[39] Fetterplace K, Deane AM, Tierney A, et al. Targeted full energy and protein delivery in critically ill patients: a pilot randomized controlled trial (FEED trial)[J]. J Parenter Enter Nutr, 2018, 42(8): 1252-1262. DOI:10.1002/jpen.1166
[40] Rugeles S, Villarraga-Angulo LG, Ariza-Gutiérrez A, et al. High-protein hypocaloric vs normocaloric enteral nutrition in critically ill patients: a randomized clinical trial[J]. J Crit Care, 2016, 35: 110-114. DOI:10.1016/j.jcrc.2016.05.004
[41] Wernerman J, Christopher KB, Annane D, et al. Metabolic support in the critically ill: a consensus of 19[J]. Crit Care, 2019, 23: 318. DOI:10.1186/s13054-019-2597-0
[42] Dickerson RN, Pitts SL, Maish GOⅢ, et al. A reappraisal of nitrogen requirements for patients with critical illness and trauma[J]. J Trauma Acute Care Surg, 2012, 73(3): 549-557. DOI:10.1097/ta.0b013e318256de1b
[43] Davies ML, Chapple LS, Chapman MJ, et al. Protein delivery and clinical outcomes in the critically ill: a systematic review and metaanalysis[J]. Crit Care Resusc, 2017, 19: 117-127.
[44] Koekkoek WACK, van Setten CHC, Olthof LE, et al. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study[J]. Clin Nutr, 2019, 38(2): 883-890. DOI:10.1016/j.clnu.2018.02.012
[45] Koekkoek WAC, van Zanten ARH. Primum non nocere in early nutrition therapy during critical illness: Balancing the pros and cons of early very high protein administration[J]. Clin Nutr, 2019, 38(4): 1963-1964. DOI:10.1016/j.clnu.2019.04.020
[46] van Zanten ARH, Petit L, de Waele J, et al. Very high intact-protein For Mula successfully provides protein intake according to nutritional recommendations in overweight critically ill patients: a double-blind randomized trial[J]. Crit Care, 2018, 22: 156. DOI:10.1186/s13054-018-2070-5
[47] Wischmeyer PE, Hasselmann M, Kummerlen C, et al. A randomized trial of supplemental parenteral nutrition in underweight and overweight critically ill patients: the TOP-UP pilot trial[J]. Crit Care, 2017, 21: 142. DOI:10.1186/s13054-017-1736-8
[48] Bloos F, Trips E, Nierhaus A, et al. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe Sepsis or septic shock[J]. JAMA Intern Med, 2016, 176(9): 1266. DOI:10.1001/jamainternmed.2016.2514
[49] Heyland D, Muscedere J, Wischmeyer PE, et al. A randomized trial of glutamine and antioxidants in critically ill patients[J]. N Engl J Med, 2013, 368(16): 1489-1497. DOI:10.1056/nejmoa1212722
[50] Rice TW. Immunonutrition in critical illness: limited benefit, potential harm[J]. JAMA, 2014, 312: 490-491. DOI:10.1001/jama.2014.7699
[51] Wernerman J. Glutamine – from conditionally essential to totally dispensable?[J]. Crit Care, 2014, 18(4): 162. DOI:10.1186/cc13964
[52] Pradelli L, Mayer K, Klek S, et al. Ω-3 fatty-acid enriched parenteral nutrition in hospitalized patients: systematic review with meta-analysis and trial sequential analysis[J]. J Parenter Enter Nutr, 2020, 44(1): 44-57. DOI:10.1002/jpen.1672
[53] Uehara M, Plank LD, Hill GL. Components of energy expenditure in patients with severe Sepsis and major trauma[J]. Crit Care Med, 1999, 27(7): 1295-1302. DOI:10.1097/00003246-199907000-00015
[54] Bost RB, Tjan DH, van Zanten AR. Timing of (supplemental) parenteral nutrition in critically ill patients: a systematic review[J]. Ann Intensive Care, 2014, 4: 31. DOI:10.1186/s13613-014-0031-y
[55] RidLey EJ, Parke RL, Davies AR, et al. What happens to nutrition intake in the post-intensive care unit hospitalization period? an observational cohort study in critically ill adults[J]. J Parenter Enter Nutr, 2019, 43(1): 88-95. DOI:10.1002/jpen.1196
[56] van Zanten ARH, de Waele E, Wischmeyer PE. Nutrition therapy and critical illness: practical guidance for the ICU, post-ICU, and long-term convalescence phases[J]. Crit Care, 2019, 23: 368. DOI:10.1186/s13054-019-2657-5
[57] Arabi YM, Casaer MP, Chapman M, et al. The intensive care medicine research agenda in nutrition and metabolism[J]. Intensive Care Med, 2017, 43(9): 1239-1256. DOI:10.1007/s00134-017-4711-6
[58] 黎介寿. 首选肠内营养的合理性[J]. 肠外与肠内营养杂志, 2013, 20(6): 321-322. R459.3.
[59] Elke G, van Zanten ARH, Lemieux M, et al. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials[J]. Crit Care, 2016, 20: 117. DOI:10.1186/s13054-016-1298-1
[60] Shi JL, Wei LY, Huang RZ, et al. Effect of combined parenteral and enteral nutrition versus enteral nutrition alone for critically ill patients[J]. Medicine, 2018, 97(41): e11874. DOI:10.1097/md.0000000000011874
[61] Patel JJ, Rosenthal MD, Heyland DK. Intermittent versus continuous feeding in critically ill adults[J]. Curr Opin Clin Nutr Metab Care, 2018, 21(2): 116-120. DOI:10.1097/mco.0000000000000447
[62] Doig GS. Effect of evidence-based feeding guidelines on mortality of critically ill adults[J]. JAMA, 2008, 300(23): 2731. DOI:10.1001/jama.2008.826
[63] Heyland DK, Lemieux M, Shu L, et al. What is "best achievable" practice in implementing the enhanced protein-energy provision via the enteral route feeding protocol in intensive care units in the United States? results of a multicenter, quality improvement collaborative[J]. JPEN J Parenter Enteral Nutr, 2016: 014860711667330. DOI:10.1177/0148607116673301
[64] Heyland DK, Murch L, Cahill N, et al. Enhanced protein-energy provision via the enteral route feeding protocol in critically ill patients[J]. Crit Care Med, 2013, 41(12): 2743-2753. DOI:10.1097/ccm.0b013e31829efef5
[65] Montejo JC, Minambres E, Bordejé L, et al. Gastric residual volume during enteral nutrition in ICU patients: the REGANE study[J]. Intensive Care Med, 2010, 36(8): 1386-1393. DOI:10.1007/s00134-010-1856-y
[66] Nguyen NQ, Chapman MJ, Fraser RJ, et al. Erythromycin is more effective than metoclopramide in the treatment of feed intolerance in critical illness[J]. Crit Care Med, 2007, 35(2): 483-489. DOI:10.1097/01.ccm.0000253410.36492.e9
[67] Reintam Blaser A, Malbrain MLNG, Starkopf J, et al. Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems[J]. Intensive Care Med, 2012, 38(3): 184-394. DOI:10.1007/s00134-011-2459-y
[68] Hermsen JL, Sano Y, Kudsk KA. Food fight! Parenteral nutrition, enteral stimulation and gut-derived mucosal immunity[J]. Langenbecks Arch Surg, 2009, 394(1): 17-30. DOI:10.1007/s00423-008-0339-x
[69] Wan X, Bi JC, Gao XJ, et al. Partial enteral nutrition preserves elements of gut barrier function, including innate immunity, intestinal alkaline phosphatase (IAP) level, and intestinal microbiota in mice[J]. Nutrients, 2015, 7(8): 6294-6312. DOI:10.3390/nu7085288
[70] Olthof LE, Koekkoek WACK, van Setten C, et al. Impact of caloric intake in critically ill patients with, and without, refeeding syndrome: a retrospective study[J]. Clin Nutr, 2018, 37(5): 1609-1617. DOI:10.1016/j.clnu.2017.08.001
[71] Doig GS, Simpson F, Heighes PT, et al. Restricted versus continued standard caloric intake during the management of refeeding syndrome in critically ill adults: a randomised, parallel-group, multicentre, single-blind controlled trial[J]. Lancet Respir Med, 2015, 3(12): 943-952. DOI:10.1016/s2213-2600(15)00418-x
[72] Berger MM, Reintam-Blaser A, Calder PC, et al. Monitoring nutrition in the ICU[J]. Clin Nutr, 2019, 38(2): 584-593. DOI:10.1016/j.clnu.2018.07.009
[73] Cederholm T, Jensen GL, Correia M, et al. GLIM criteria for the diagnosis of malnutrition – a consensus report from the global clinical nutrition community[J]. J Cachexia Sarcopenia Muscle, 2019, 10(1): 207-217. DOI:10.1002/jcsm.12383
[74] Sheean PM, Peterson SJ, Gomez Perez S, et al. The prevalence of sarcopenia in patients with respiratory failure classified as normally nourished using computed tomography and subjective global assessment[J]. JPEN J Parenter Enteral Nutr, 2014, 38(7): 873-879. DOI:10.1177/0148607113500308
[75] Campbell IT, Watt T, Withers D, et al. Muscle thickness, measured with ultrasound, may be an Indicator of lean tissue wasting in multiple organ failure in the presence of edema[J]. Am J Clin Nutr, 1995, 62(3): 533-539. DOI:10.1093/ajcn/62.3.533
[76] Mundi MS, Patel JJ, Martindale R. Body composition technology: implications for the ICU[J]. Nutr Clin Pract, 2019, 34(1): 48-58. DOI:10.1002/ncp.10230
[77] Paris M, Mourtzakis M. Assessment of skeletal muscle mass in critically ill patients: considerations for the utility of computed tomography imaging and ultrasonography[J]. Curr Opin Clin Nutr Metab Care, 2016, 19(2): 125-130. DOI:10.1097/MCO.0000000000000259
[78] Kondrup J, Rasmussen HH, Hamberg O, et al. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials[J]. Clin Nutr, 2003, 22(3): 321-336. DOI:10.1016/s0261-5614(02)00214-5
[79] Stratton R J, Hackston A, Longmore D, et al. Malnutrition in hospital outpatients and inpatients: prevalence, concurrent validity and ease of use of the 'malnutrition universal screening tool' ('MUST') for adults[J]. Br J Nutr, 2004, 92(5): 799-808. DOI:10.1079/bjn20041258
[80] Guigoz Y, Lauque S, Vellas BJ. Identifying the elderly at risk for malnutrition. The Mini Nutritional Assessment[J]. Clin Geriatr Med, 2002, 18(4): 737-757. DOI:10.1016/s0749-0690(02)00059-9
[81] Rahman A, Hasan RM, Agarwala R, et al. Identifying critically-ill patients who will benefit most from nutritional therapy: Further validation of the "modified NUTRIC" nutritional risk assessment tool[J]. Clin Nutr, 2016, 35(1): 158-162. DOI:10.1016/j.clnu.2015.01.015.Epub2015Jan28
[82] Lambell KJ, Tatucu-Babet OA, Chapple LA, et al. Nutrition therapy in critical illness: a review of the literature for clinicians[J]. Crit Care, 2020, 24: 35. DOI:10.1186/s13054-020-2739-4