2 上海交通大学附属第六人民院急诊科,上海 200233
2 Department of Emergency Medicine, Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 2002332, China
随着现代社会的发展,交通伤、坠落伤发生率逐年增加[1-2],创伤已成为45岁以下人群的首要死因[3]。2000年WHO报告创伤所致死亡的人数约500万,占全球死亡总人口的9%,是全球第三大死亡危险因素[4-5]。创伤可激活炎症反应,释放多种炎症介质[6-9]。多种炎症介质发挥着不同的作用,其激活通路也不尽相同。本研究通过分析创伤患者24 h、48 h、72 h内,外周血血清中炎症因子表达水平的变化,来探究其变化的临床意义,探索其激活机制。
1 资料与方法 1.1 一般资料2016年1月至2017年2月上海交通大学附属第六人民医院急性创伤中心收治顿性创伤患者80例(表 1),其中男55例、女45例,年龄(18~60),(40.25±10.22)岁,均由本科室经验丰富的副主任以上医师做出诊断,并由影像、检验以及手术证实。其中挤压伤18例、车祸伤22例、坠落伤27例、重物砸伤13例。并依据AIS-ISS评分方法,将80例患者分为三组,轻伤组:ISS≤16分;重伤组:16 < ISS≤25分;严重伤组ISS > 25分;健康对照组20例,其中男13例、女7例,年龄(18~60),(36.55±11.20)岁。入选标准:钝性创伤;18岁≤年龄≤60岁;创伤后24 h内入院。排除标准:锐器伤、烧伤或化学伤患者;妊娠期妇女;单纯脑外伤;既往有血液病、糖尿病、高血压病及冠心病等基础疾病史;创伤前2周内有抗凝药物或抗血小板聚集药物服用史;创伤前2周内有抗炎药物使用史或感染史;创伤后24 h内死亡。
变量 | 例数(n) | 比例(%) |
性别 | ||
男 | 45 | 56.2% |
女 | 35 | 43.8% |
创伤机制 | ||
车祸伤 | 22 | 27.5% |
坠落伤 | 27 | 33.8% |
挤压伤 | 18 | 22.5% |
重物伤 | 13 | 16.2% |
创伤部位 | ||
上肢 | 16 | 20.0% |
脊柱 | 22 | 27.5% |
下肢 | 34 | 42.5% |
其他 | 8 | 10.0% |
ISS | ||
9~16 | 24 | 30.0% |
16~25 | 36 | 45.0% |
≥25 | 20 | 25.0% |
注:ISS创伤严重程度评分 |
依据是否发生创伤分为两组:创伤组和对照组。比较创伤发生后两组血清IL-18、IL-1β表达水平是否存在差异。再依据AIS-ISS评分方法将创伤组分为3组:轻伤组:ISS≤16分;重伤组:16 < ISS≤25分;严重伤组ISS > 25分。
1.2.1标本采集患者发生顿性创伤24 h内入院,取其外周血,并以4 000 r/min离心5 min,取上清液液存于冻存管中,放置于-80℃冰箱保存。检测方法采用酶联免疫吸附法(ELISA)定量测定血清中IL-18、IL-1β表达水平。IL-18,IL-1β试剂盒购于美国R & D Systems公司。
1.3 统计学方法采用SPSS 17.0软件分析,连续变量采用成组t检验分析,计量资料用均数±标准差(Mean±SD)表示。健康组与创伤组采用成组t检验,创伤组内比较分别采用两样本t检验进行两两比较,以P < 0.05为差异具有统计学意义。
2 结果患者创伤后,血清中IL-18、IL-1β表达水平显著升高,具有统计学意义(表 2、图 1)。患者创伤后72 h内,患者血清中IL-18、IL-1β表达水平呈现上升趋势(图 2)。创伤后NLRP3炎症小体激活,从而活化Caspase-1,成熟并裂解炎症因子前体(Pro-IL-18、Pro-IL-1β),并释放于细胞外。患者创伤后,AIS-ISS评分越高,血清中定量检测到IL-18、IL-1β的表达水平越高。说明患者创伤越严重,NLRP3炎症小体激活越多,炎症反应越剧烈(表 3、图 3)。
指标 | 健康对照组 | 创伤实验组 |
IL-1β | 16±2.0 | 80±2.0a |
IL-18 | 17±2.0 | 27±3.0b |
注:与健康对照组比较aP<0.05 、bP<0.01 |
![]() |
患者创伤后血清中I-1β、IL-18与健康对照组比较, aP<0.01 图 1 健康对照组与创伤实验组IL-1β、I-18 表达水平 Fig 1 I- 1 beta andIL- 18 expression levels of healthy contols and traurna patients |
|
![]() |
图 2 健康组与创伤组I-1β、IL-18表达水平变化 Fig 2 The changes of IL- 1 beta and IL - 18 expression level in bealtly controls and taumna patients |
|
指标 | 1 d | 2 d | 3 d |
IL-1β | 80±2.0 | 253±20 a | 315±20 a |
IL-18 | 27±3.0 | 37±5.0 a | 45±2.0 a |
注:创伤后第2天与第1天比较,aP<0.01;创伤后第3天与第 2天比较,aP<0.01 |
![]() |
创伤后第2天与第1天比较,aP<0.01 ;创伤后第3天与第2天 比较, aP<0.01 ; d1:创伤后第1天,d2: 创伤后第2天; d3: 创伤后 第3天 图 3 创伤组IL-1β、IL-18 表达水平变化 Fig 3 The changes of IL- 1 beta and IL- 18 expression level in the trauma patients |
|
创伤不仅可造成机体原发性损伤,而且由于各种炎性介质及细胞因子的释放还可导致继发性损伤,并且后者往往能左右危重病的转归和预后[10-13]。创伤发生后各种炎性介质及细胞因子释放,彼此相互作用,构成复杂的细胞因子网络,在创伤后炎症反应的级联放大中发挥着重要作用[14]。炎症反应的大爆发,可导致全身炎症反应,造成多器官衰竭,从而致使创伤患者预后不佳甚至死亡[15-16]。实验结果显示患者创伤早期血清中IL-18、IL-1β表达水平显著增加,创伤第3天仍呈现上升趋势。IL-18、IL-1β对机体具有保护作用,但是过度表达则有害无益。IL-1β能协同IL-6、IL-2等促炎因子的合成加剧炎症反应[17-18];其自身也能使机体产生发热、低血压、脓毒血症、心肌抑制和休克等症状[19-20];使β细胞带有毒性,产生胰岛素抵抗、胰岛素分泌紊乱[21-22];激活环氧合酶和脂肪合酶,产生高脂血症[23]等一系列损伤。IL-18不但可诱导T细胞和NK细胞产生IFN-γ和TNF-α,而且还可增强FasL的表达,并加强NK细胞毒性等生物学效应[24-25]。参与脓毒血症、肠炎等多种疾病的病理过程[26]。因此,实时监测两种炎症因子的表达水平对于评估患者病情的发展十分重要,进而可对患者展开适当的治疗措施,以便减少相关并发症和病死率,提高患者的生命质量。从代谢组学观点,IL-18、IL-1β的释放,是由于NLRP3炎症小体的激活,从而活化了caspase-1,促进IL-18、IL-1β前体的裂解并释放成熟的IL-18、IL-1β于细胞外,参与炎症反应。本实验从分子水平阐释了创伤后相关炎症指标的变化,并探讨了炎症因子释放的激活通路。为后续深入研究奠定了理论基础,与此同时为临床创伤后继发性损伤的治疗提供了新的思路、新方法。
利益冲突 所有作者均声明不存在利益冲突。
[1] | 白祥军, 高伟, 李占飞. 推进创伤中心建设与分级救治提升创伤救治水平[J]. 中华急诊医学杂志, 2013, 22(6): 567-569. DOI:10.3760/cma.j.issn.1671-0282.2013.06.002 |
[2] | Pan C. Trends in mortality of emergency departments patients in China[J]. World J Emerg Med, 2019, 10(3): 152. DOI:10.5847/wjem.j.1920-8642.2019.03.004 |
[3] | McLaughlin DF, Niles SE, Salinas J, et al. A predictive model for massive transfusion in combat casualty patients[J]. J Trauma: Inj Infect Crit Care, 2008, 64(Supplement): S57-S63. DOI:10.1097/ta.0b013e318160a566 |
[4] | Geerts WH. Prevention of venous thromboembolism in high-risk patients[J]. Hematology, 2006, 2006(1): 462-466. DOI:10.1182/asheducation-2006.1.462 |
[5] | Vougiouklakis T. Right atrium tear as cause of death after blunt chest trauma[J]. Injury, 2006, 37(1): 81-82. DOI:10.1016/j.injury.2005.03.015 |
[6] | Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury[J]. Nature, 2010, 464(7285): 104-107. DOI:10.1038/nature08780 |
[7] | Mira JC, Brakenridge SC, Moldawer LL, et al. Persistent inflammation, immunosuppression and catabolism syndrome[J]. Crit Care Clin, 2017, 33(2): 245-258. DOI:10.1016/j.ccc.2016.12.001 |
[8] | Almahmoud K, Namas RA, Zaaqoq AM, et al. Prehospital hypotension is associated with altered inflammation dynamics and worse outcomes following blunt trauma in humans[J]. Crit Care Med, 2015, 43(7): 1395-1404. DOI:10.1097/ccm.0000000000000964 |
[9] | 张聪, 邓海, 李镇文, 等. 多发伤后急性胃肠功能损伤的影响因素研究[J]. 中华急诊医学杂志, 2020, 29(5): 661-664. DOI:10.3760/cma.j.issn.1671-0282.2020.05.010 |
[10] | Shwe S. Retrospective analysis of eFAST ultrasounds performed on trauma activations at an academic level-1 trauma center[J]. World J Emerg Med, 2020, 11(1): 12. DOI:10.5847/wjem.j.1920-8642.2020.01.002 |
[11] | Joyce MF, Gupta A, Azocar RJ. Acute trauma and multiple injuries in the elderly population[J]. Curr Opin Anaesthesiol, 2015, 28(2): 145-150. DOI:10.1097/aco.0000000000000173 |
[12] | 许辰, 杨焱平, 封启明. 创伤患者血清载脂蛋白A-1水平与创伤严重程度的关系[J]. 中华急诊医学杂志, 2019, 28(9): 1128-1132. DOI:10.3760/cma.j.issn.1671-0282.2019.09.013 |
[13] | Deitch EA. Role of the gut in the development of injury- and shock induced SIRS and MODS: the gut-lymph hypothesis, a review[J]. Front Biosci, 2006, 11(1): 520. DOI:10.2741/1816 |
[14] | Haasper C, Kalmbach M, Dikos GD, et al. Prognostic value of procalcitonin (PCT) and/or interleukin-6 (IL-6) plasma levels after multiple trauma for the development of multi organ dysfunction syndrome (MODS) or Sepsis[J]. Technol Heal Care, 2010, 18(2): 89-100. DOI:10.3233/thc-2010-0571 |
[15] | Oh K, Lee OY, Park Y, et al. IL-1β induces IL-6 production and increases invasiveness and estrogen-independent growth in a TG2-dependent manner in human breast cancer cells[J]. BMC Cancer, 2016, 16: 724. DOI:10.1186/s12885-016-2746-7 |
[16] | Ganesh BB, Bhattacharya P, Gopisetty A, et al. IL-1β promotes TGF-β1 and IL-2 dependent Foxp3 expression in regulatory T cells[J]. PLoS One, 2011, 6(7): e21949. DOI:10.1371/journal.pone.0021949 |
[17] | Song YX, Dou H, Li XJ, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against Sepsis[J]. Stem Cells, 2017, 35(5): 1208-1221. DOI:10.1002/stem.2564 |
[18] | Qu HP, Liu ZJ, Liu JL. Measurement of monocyte apoptosis, plasma IL-1β and PR3 activity as an approach to evaluate the immunological status in Sepsis[J]. Crit Care, 2011, 15(3): 434. DOI:10.1186/cc10248 |
[19] | Wang J, Wang HY, Zhu RR, et al. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced Sepsis[J]. Biomaterials, 2015, 53: 475-483. DOI:10.1016/j.biomaterials.2015.02.116 |
[20] | Su D, Coudriet GM, Hyun Kim D, et al. FoxO1 links insulin resistance to proinflammatory cytokine IL-1 production in macrophages[J]. Diabetes, 2009, 58(11): 2624-2633. DOI:10.2337/db09-0232 |
[21] | Böni-Schnetzler M, Donath MY. Increased IL-1β activation, the culprit not only for defective insulin secretion but also for insulin resistance?[J]. Cell Res, 2011, 21(7): 995-997. DOI:10.1038/cr.2011.85 |
[22] | Finucane OM, Lyons CL, Murphy AM, et al. Monounsaturated fatty acid–enriched high-fat diets impede adipose NLRP3 inflammasome–mediated IL-1β secretion and insulin resistance despite obesity[J]. Diabetes, 2015, 64(6): 2116-2128. DOI:10.2337/db14-1098 |
[23] | Zhu FQ, Qian CY. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer′s disease[J]. BMC Neurosci, 2006, 7: 78. DOI:10.1186/1471-2202-7-78 |
[24] | Menon R, Lombardi S J, Fortunato S J. IL-18, a product of choriodecidual cells, increases during premature rupture of membranes but fails to turn on the Fas-FasL-mediated apoptosis pathway[J]. Ass Repr Gen, 2001, 18(5): 276-284. DOI:10.1023/A:1016626620137 |
[25] | Haeberlein S, Sebald H, Bogdan C, et al. IL-18, but not IL-15, contributes to the IL-12-dependent induction of NK-cell effector functions by Leishmania infantum in vivo[J]. Eur J Immunol, 2010, 40(6): 1708-1717. DOI:10.1002/eji.200939988 |
[26] | El-Sayed Zaki M, Yousef Elgendy M, Badr El-Deen El-Mashad N, et al. IL-18 level correlates with development of Sepsis in surgical patients[J]. Immunol Investig, 2007, 36(4): 403-411. DOI:10.1080/08820130701244275 |