2. 达州中医药职业学院, 达州 635000;
3. 第三军医大学西南医院神经外科, 重庆 400000
创伤性脑损伤(Traumatic brain injury,TBI)指由外力所致的脑组织损害或者功能障碍[1]。全球每年约5000-6000万新增病例,TBI患者占外伤导致死亡人数的30%,每年约530万患者因TBI致残[2]。TBI对个人、家庭及社会产生巨大的经济负担,据统计全球每年因TBI耗费约4000亿美元[3]。因此,探究TBI后损伤的机制,并发现有效干预措施,可从一定程度上降低TBI引起的致残和致死率,减轻社会负担。
脑水肿是TBI患者致残和致死的主要原因之一[4],因此分析其机制具有重要的临床价值。脑水肿是脑损伤的一种并发症,通常在TBI后数小时内发生,它不仅是引起脑功能障碍的重要原因,而且也是引起颅内高压和脑疝的关键因素[5]。TBI后脑水肿的形成与水通道蛋白通道的异常开放密切相关[6]。水通道蛋白(AQP)是一组选择性跨膜通道蛋白,能实现水分子双向跨膜转移,在细胞水肿形成的过程中起着不可或缺的作用。迄今为止,在人体内已发现AQP有12个独特的亚型,AQP1和AQP5主要分布于肺[7]、AQP2和AQP3主要分布于肾脏[8]、AQP4和AQP9主要分布在大脑[9]等;因AQP4参与TBI后多种相关疾病的生物学活动,如脑水肿形成[10]、炎症反应[11]、反应性瘢痕形成[12]等,其目前已成为研究TBI相关神经系统疾病的热门靶点。本文围绕AQP4在TBI后修复过程的作用进行综述,并阐述AQP4在TBI后修复过程中的应用前景。
1 AQP4在TBI相关颅脑疾病的作用 1.1 AQP4参与维持血脑屏障完整性AQP4参与维持TBI后血脑屏障完整性。血脑屏障(BBB)破坏是TBI后继发性脑损伤的主要原因之一;破坏的血脑屏障允许白细胞、神经毒性物质和血管活性物质进入大脑,对大脑造成二次伤害[13]。研究[14-15]发现星形胶质细胞上AQP4表达上调,血脑屏障通透性越好,脑水肿越明显,不利于神经功能恢复。研究[16]也发现降低了病灶区星形胶质细胞AQP4表达,能减轻TBI后血脑屏障(BBB)破坏,有利于神经功能恢复;由此说明,AQP4表达下调,能更好地维持血脑屏障完整性。
1.2 AQP4参与脑水肿形成AQP4参与TBI后脑水肿形成。研究表明,与野生型对照组相比,AQP4基因敲除小鼠TBI后脑水肿面积减少35%[17];而野生型组小鼠脑组织吸收水分明显增加,较AQP4基因敲除小鼠的脑组织吸收水分增加31%[18];由此证明AQP4是细胞毒性水肿的关键参与者。TBI后脑水肿的形成是因钙调蛋白(Calmodulin,CaM)构象发生改变,因其与AQP4直接相互作用,进而引起AQP4羧基末端的构象发生改变,导致细胞膜对水的通透性增加,促进脑水肿的形成[19-20]。通过CaM抑制剂三氟拉嗪(Trifluoperazine,TFP)阻断AQP4构象改变,可以减轻脑水肿的形成,有利于大鼠的感觉和运动功能的恢复[21]。因此推测,可以通过阻碍水通道蛋白构象改变,来减轻中枢神经系统的水肿。
1.3 AQP4参与炎症反应AQP4参与TBI后小鼠大脑内炎症反应[22]。TBI后多种炎症因子表达上调,如:白细胞介素1β[23]、肿瘤坏死因子(TNF-α)[24]和白介素-10(IL-10)[25]等;而AQP4基因缺陷小鼠中激活的小胶质细胞的数量显着降低,炎症因子表达下调[26],由此可以推测AQP4缺陷对炎症反应有抑制作用。骨桥蛋白(osteopenia,OPN)是一种炎症因子诱导剂,能激活星形胶质细胞和小胶质细胞,并诱导其增殖和迁移[27]。TBI后,小鼠损伤脑区的OPN含量明显高于AQP4敲除小鼠[28],综上所述,TBI后,AQP4表达与OPN含量增加正相关,两者协同参与中枢神经系统炎症反应。
1.4 AQP4促进TBI后代谢产物清除AQP4促进TBI后代谢产物清除。AQP4通常在脑皮层、胼胝体、视网膜、小脑、脑干等区域血管上星形胶质细胞的足突部表达,是参与脑内类淋巴循环的主要组成结构;机体通过AQP4通道实现血管旁脑脊液-间质液的交换,清除脑组织中异常蛋白质和代谢产物[29]。TBI后,AQP4参与β-淀粉样蛋白(Aβ)清除,有利于认知功能恢复[30],而AQP4基因敲除小鼠,认知功能恢复速度减慢[31];由此推断,AQP4基因缺失不利于TBI后Aβ清除,不利于认知功能恢复。
1.5 AQP4促进细胞增殖AQP4促进TBI后神经干细胞增殖。创伤性脑损伤(TBI)可刺激成人海马齿状回(Dentate gyrus,DG)神经干细胞增殖。成人DG中有不同类别的神经干细胞,包括静止神经干细胞及其后代[32]。TBI后,静止状态的神经干细胞(neural stem cells,NSCs)被激活,随后开始增殖、向病变区域迁移、分化为三种主要中枢神经系统细胞:星形胶质细胞、神经元和少突胶质细胞,并迁移到损伤区域及其周围,调节损伤后的组织稳态,促进损伤区域修复[33-34]。Kong等[35]发现,AQP4基因敲除后,神经干细胞的增殖、迁移以及向三种主要中枢神经系统细胞分化能力被抑制;由此说明,AQP4促进了TBI后神经干细胞增殖,有利于神经损伤再生修复。
1.6 AQP4参与反应性瘢痕形成AQP4参与TBI后反应性瘢痕形成。TBI后,星形胶质细胞被激活变成反应性星形胶质细胞;反应性星形胶质细胞迁移至病变部位增殖,形成反应性瘢痕。Ikeshima-Kataoka等[36]发现,TBI后,上调AQP4表达,迁移到小鼠病灶区的反应性星形胶质细胞数目增多,病灶区瘢痕形成面积增加;另一方面,TBI后,下调AQP4表达,迁移到小鼠病灶区的反应性星形胶质细胞数目减少,病灶区瘢痕形成面积减少。由此说明,AQP4参与了TBI后反应性瘢痕的形成。
2 AQP4在TBI相关疾病应用前景阻断AQP4的M1型异构体,有利于TBI后神经功能恢复。AQP4有两种异构体,即M1和M23型异构体;M1异构体通水效率远高于M23型异构体,其主要参与维持细胞水平衡;而M23型主要参与维持细胞膜的结构形态[37]。林等人发现,TBI后,M1异构体在损伤区域表达上调,给予miR-130a选择性阻断AQP4 M1型的转录,使脑水肿程度下降,有利于TBI后神经功能恢复[38]。研究发现尽管可通过特定的miRNA下调AQP4表达,减轻TBI后脑水肿,但其安全性仍然是未知的,需要进一步研究。
铁螯合剂能下调AQP4的表达,减轻TBI后脑水肿[39]。铁螯合剂去铁胺(Deferoxamine,DFO)能与Fe2+强力结合,通过减少血肿周围区域的铁沉积,下调星形胶质细胞中AQP4表达,减轻脑水肿[40]。然而,DFO作为一种能治疗铁超载潜在药物,在它可以作为一种常规治疗药物之前,必须具有合适的给药途径、标准化的给药方案,这些都需要进一步研究。
3 总结与展望AQP4与TBI后脑水肿形成、代谢产物清除、神经干细胞的增殖和反应性瘢痕的形成等密切相关。TBI后,上调AQP4表达,有利于代谢产物清除和神经干细胞增殖;下调AQP4表达有利于减轻脑水肿和反应性瘢痕形成。目前,关于抑制AQP4活性的制剂的研究取得了一定成果,如miR-130a、DFO能抑制AQP4转录,使TBI脑水肿减轻,对TBI后神经功能恢复是有利的;但目前主要的挑战是阻断AQP4蛋白的制剂还没有合适的给药途径、标准化的给药方案等。因此,提高对AQP4在TBI后神经功能恢复作用机制的进一步认识,早日实现AQP4活性调节制剂的临床应用,仍有待进一步探索。
利益冲突 所有作者声明无利益冲突
作者贡献声明 周馨、刘梦龙:论文撰写;喻安永、葛红飞、卜婷婷、高甜、胡权:数据收集及整理;段海真:论文修改
[1] | Dewan MC, Rattani A, Gupta S, et al. Estimating the global incidence of traumatic brain injury[J]. J Neurosurg, 2018: 1-18. DOI:10.3171/2017.10.jns17352 |
[2] | Zelinkova V, Brazinova A, Taylor MS, et al. Location of traumatic brain injury-related deaths: epidemiological analysis of 11 European countries[J]. Brain Inj, 2019, 33(7): 830-835. DOI:10.1080/02699052.2019.1605622 |
[3] | Stubbs JL, Thornton AE, Sevick JM, et al. Traumatic brain injury in homeless and marginally housed individuals: a systematic review and meta-analysis[J]. Lancet Public Health, 2020, 5(1): e19-e32. DOI:10.1016/S2468-2667(19)30188-4 |
[4] | Xiong A, Li JX, Xiong RP, et al. Inhibition of HIF-1α-AQP4 axis ameliorates brain edema and neurological functional deficits in a rat controlled cortical injury (CCI) model[J]. Sci Rep, 2022, 12(1): 2701. DOI:10.1038/s41598-022-06773-9 |
[5] | Mac Donald CL, Barber J, Patterson J, et al. Association between 5-year clinical outcome in patients with nonmedically evacuated mild blast traumatic brain injury and clinical measures collected within 7 days postinjury in combat[J]. JAMA Netw Open, 2019, 2(1): e186676. DOI:10.1001/jamanetworkopen.2018.6676 |
[6] | Li YC, Wu P, Bihl JC, et al. Underlying mechanisms and potential therapeutic molecular targets in blood-brain barrier disruption after subarachnoid hemorrhage[J]. Curr Neuropharmacol, 2020, 18(12): 1168-1179. DOI:10.2174/1570159X18666200106154203 |
[7] | Zhang JP, Yan MP, Gu W, et al. Downregulation of aquaporins (AQP1 and AQP5) and Na, K-ATPase in Porcine reproductive and respiratory syndrome virus-infected pig lungs[J]. Inflammation, 2018, 41(3): 1104-1114. DOI:10.1007/s10753-018-0762-2 |
[8] | Choi HJ, Jang HJ, Park E, et al. Sorting nexin 27 regulates the lysosomal degradation of aquaporin-2 protein in the kidney collecting duct[J]. Cells, 2020, 9(5): E1208. DOI:10.3390/cells9051208 |
[9] | Trillo-Contreras JL, Ramírez-Lorca R, Villadiego J, et al. Cellular distribution of brain aquaporins and their contribution to cerebrospinal fluid homeostasis and Hydrocephalus[J]. Biomolecules, 2022, 12(4): 530. DOI:10.3390/biom12040530 |
[10] | Vindedal GF, Thoren AE, Jensen V, et al. Removal of aquaporin-4 from glial and ependymal membranes causes brain water accumulation[J]. Mol Cell Neurosci, 2016, 77: 47-52. DOI:10.1016/j.mcn.2016.10.004 |
[11] | Ikeshima-Kataoka H, Matsui Y, Uede T. Osteopontin is indispensable for activation of astrocytes in injured mouse brain and primary culture[J]. Neurol Res, 2018, 40(12): 1071-1079. DOI:10.1080/01616412.2018.1517995 |
[12] | Song GY, Yang R, Zhang Q, et al. TGF-β secretion by M2 macrophages induces glial scar formation by activating astrocytes In vitro[J]. J Mol Neurosci, 2019, 69(2): 324-332. DOI:10.1007/s12031-019-01361-5 |
[13] | Keep RF, Andjelkovic AV, Xiang JM, et al. Brain endothelial cell junctions after cerebral hemorrhage: changes, mechanisms and therapeutic targets[J]. J Cereb Blood Flow Metab, 2018, 38(8): 1255-1275. DOI:10.1177/0271678X18774666 |
[14] | Tan ZJ, Chen LL, Ren YC, et al. Neuroprotective effects of FK866 against traumatic brain injury: involvement of p38/ERK pathway[J]. Ann Clin Transl Neurol, 2020, 7(5): 742-756. DOI:10.1002/acn3.51044 |
[15] | 张轶钦, 钟文宏, 韩永丽, 等. 人血白蛋白对缺血-再灌注大鼠血脑屏障通透性的影响[J]. 中华急诊医学杂志, 2017, 26(4): 410-414. DOI:10.3760/cma.j.issn.1671-0282.2017.04.011 |
[16] | Clark LR, Yun S, Acquah NK, et al. Mild traumatic brain injury induces transient, sequential increases in proliferation, neuroblasts/immature neurons, and cell survival: a time course study in the male mouse dentate gyrus[J]. Front Neurosci, 2021, 14: 612749. DOI:10.3389/fnins.2020.612749 |
[17] | Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke[J]. Nat Med, 2000, 6(2): 159-163. DOI:10.1038/72256 |
[18] | Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet[J]. Proc Natl Acad Sci USA, 2011, 108(43): 17815-17820. DOI:10.1073/pnas.1110655108 |
[19] | Colbourn R, Hrabe J, Nicholson C, et al. Rapid volume pulsation of the extracellular space coincides with epileptiform activity in mice and depends on the NBCe1 transporter[J]. J Physiol, 2021, 599(12): 3195-3220. DOI:10.1113/JP281544 |
[20] | 刘志锋, 刘庆余, 叶浩翊, 等. 基于T2WI图像纹理分析评价大鼠心肺复苏后脑损伤初步研究[J]. 中华急诊医学杂志, 2021, 30(12): 1438-1443. DOI:10.3760/cma.j.issn.1671-0282.2021.12.005 |
[21] | Kitchen P, Salman MM, Halsey AM, et al. Targeting aquaporin-4 subcellular localization to treat central nervous system edema[J]. Cell, 2020, 181(4): 784-799.e19. DOI:10.1016/j.cell.2020.03.037 |
[22] | Wang J, Sareddy GR, Lu YJ, et al. Astrocyte-Derived Estrogen Regulates Reactive Astrogliosis and is Neuroprotective following Ischemic Brain Injury[J]. J Neurosci, 2020, 40(50): 9751-9771. DOI:10.1523/JNEUROSCI.0888-20.2020 |
[23] | John GR, Chen LF, Rivieccio MA, et al. Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis[J]. J Neurosci, 2004, 24(11): 2837-2845. DOI:10.1523/JNEUROSCI.4789-03.2004 |
[24] | Xue X, Zhang WW, Zhu JF, et al. Aquaporin-4 deficiency reduces TGF-β1 in mouse midbrains and exacerbates pathology in experimental Parkinson's disease[J]. J Cell Mol Med, 2019, 23(4): 2568-2582. DOI:10.1111/jcmm.14147 |
[25] | Liu XC, Wu G, Tang N, et al. Glymphatic drainage blocking aggravates brain edema, neuroinflammation via modulating TNF-α, IL-10, and AQP4 after intracerebral hemorrhage in rats[J]. Front Cell Neurosci, 2021, 15: 784154. DOI:10.3389/fncel.2021.784154 |
[26] | Chi Y, Fan Y, He L, et al. Novel role of aquaporin-4 in CD4+ CD25+ T regulatory cell development and severity of Parkinson's disease[J]. Aging Cell, 2011, 10(3): 368-382. DOI:10.1111/j.1474-9726.2011.00677.x |
[27] | Verkman AS, Smith AJ, Phuan PW, et al. The aquaporin-4 water channel as a potential drug target in neurological disorders[J]. Expert Opin Ther Targets, 2017, 21(12): 1161-1170. DOI:10.1080/14728222.2017.1398236 |
[28] | Wang C, Yan MY, Jiang H, et al. Mechanism of aquaporin 4 (AQP 4) up-regulation in rat cerebral edema under hypobaric hypoxia and the preventative effect of puerarin[J]. Life Sci, 2018, 193: 270-281. DOI:10.1016/j.lfs.2017.10.021 |
[29] | Ding DH, Wang XY, Li QQ, et al. Research on the glial-lymphatic system and its relationship with Alzheimer's disease[J]. Front Neurosci, 2021, 15: 605586. DOI:10.3389/fnins.2021.605586 |
[30] | D'Atri A, Scarpelli S, Gorgoni M, et al. EEG alterations during wake and sleep in mild cognitive impairment and Alzheimer's disease[J]. iScience, 2021, 24(4): 102386. DOI:10.1016/j.isci.2021.102386 |
[31] | Liu XS, Xie YX, Wan XD, et al. Protective effects of aquaporin-4 deficiency on longer-term neurological outcomes in a mouse model[J]. Neurochem Res, 2021, 46(6): 1380-1389. DOI:10.1007/s11064-021-03272-7 |
[32] | Yang Y, Zhang KY, Chen XZ, et al. SVCT2 promotes neural stem/progenitor cells migration through activating CDC42 after ischemic stroke[J]. Front Cell Neurosci, 2019, 13: 429. DOI:10.3389/fncel.2019.00429 |
[33] | Chen YQ, Gao F, Jiang R, et al. Down-regulation of AQP4 expression via p38 MAPK signaling in temozolomide-induced glioma cells growth inhibition and invasion impairment[J]. J Cell Biochem, 2017, 118(12): 4905-4913. DOI:10.1002/jcb.26176 |
[34] | Mader S, Brimberg L. Aquaporin-4 water channel in the brain and its implication for health and disease[J]. Cells, 2019, 8(2): E90. DOI:10.3390/cells8020090 |
[35] | Kong H, Fan Y, Xie J, et al. AQP4 knockout impairs proliferation, migration and neuronal differentiation of adult neural stem cells[J]. J Cell Sci, 2008, 121(Pt 24): 4029-4036. DOI:10.1242/jcs.035758 |
[36] | Ikeshima-Kataoka H, Abe Y, Yasui M. Aquaporin 4-dependent expression of glial fibrillary acidic protein and tenascin-C in activated astrocytes in stab wound mouse brain and in primary culture[J]. J Neurosci Res, 2015, 93(1): 121-129. DOI:10.1002/jnr.23467 |
[37] | Hirt L, Ternon B, Price M, et al. Protective role of early aquaporin 4 induction against postischemic edema formation[J]. J Cereb Blood Flow Metab, 2009, 29(2): 423-433. DOI:10.1038/jcbfm.2008.133 |
[38] | Sepramaniam S, Ying LK, Armugam A, et al. microRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter[J]. J Biol Chem, 2012, 287(15): 12006-12015. DOI:10.1074/jbc.M111.280701 |
[39] | Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation[J]. Handb Clin Neurol, 2018, 147: 293-305. DOI:10.1016/B978-0-444-63233-3.00019-1 |
[40] | Farr AC, Xiong MP. Challenges and Opportunities of Deferoxamine Delivery for Treatment of Alzheimer's Disease, Parkinson's Disease, and Intracerebral Hemorrhage[J]. Molecular pharmaceutics, 2021, 18(2): 593-609. DOI:10.1021/acs.molpharmaceut.0c00474 |