2. 宁波大学附属人民医院重症医学科,宁波 315040
2. Department of Intensive Care Unit, People's Hospital Affiliated to Ningbo University, Ningbo Yinzhou People's Hospital, Ningbo 315040, China
机械通气是危重患者最常用的治疗方法,大多数患者可及时成功撤机,但仍有近20%的机械通气患者在其首次尝试撤机中失败,且这些患者在撤机过程中花费的时间占总通气时间的40%以上,撤机时机不当会导致再次气管插管[1-2],长期机械通气与高发病率和病死率有关,因此避免过早撤机拔管和不必要的机械通气时间延长显得尤为重要[3]。机械通气时间延长,会增加一系列相关并发症(如神经肌肉病变、膈肌功能障碍、呼吸机相关肺炎、获得性虚弱、深静脉血栓等)的发生率和病死率[4-6]。机械通气撤机失败的一个主要决定因素是呼吸肌功能障碍[7-8],膈肌是最重要的呼吸肌,在撤机结局中起决定性作用[9-12]。
分钟通气量(MV)、最大吸气压力(PImax)、呼吸频率(RR)、浅快呼吸指数(RSBI)、0.1 s气道闭合压力(P0.1)和顺应性-速率-氧合-压力指数(CROPI)等是目前临床常规用来评估患者能否撤机的指标,但这些指标都不同程度受到患者临床状态的影响。RSBI是近年来自主呼吸试验时的新指标,对撤机失败预测较精确,当RSBI<105时对预测撤机成功的敏感度为35%~100%,特异度为0%~89%,可见在不同患者中监测结局差异较大[13]且不能准确评估呼吸肌的功能状态。本项研究基于超声具有无创、实时、可重现性及准确度高等优点,采用超声评估机械通气患者膈肌功能状态,为临床撤机寻找更准确评价指标提供参考依据,现报道如下。
1 资料与方法 1.1 一般资料采用回顾性研究方法,选取2020年1月至2022年2月宁波大学附属人民医院收治入院因急性呼吸衰竭实施有创机械通气且符合撤机标准的53例患者临床资料,依据撤机结果分为撤机成功组36例,其中男性22例,女性14例,年龄为(62.18±13.71)岁;撤机失败组17例,其中男性12例,女性5例,年龄为(65.79±17.23)岁。两组差异无统计学意义(P>0.05),两组具有可比性。本项研究符合医学伦理学标准,获得宁波大学附属人民医院伦理委员会批准(审批号:2019-011),所有入组患者授权家属自愿加入本项研究并签署知情同意书。
1.2 纳入标准与排除标准 1.2.1 纳入标准因急性呼吸衰竭需机械通气治疗超过48 h的成年患者,符合撤机标准时行SBT实验(spontaneous breathing trial, SBT, SBT模式为断开呼吸机并通过T管吸氧即“T管法”)。其中撤机标准[14]符合下列条件:①导致机械通气的病因好转或去除;②氧合指数(PaO2/FiO2)>150~200 mmHg(1 mmHg=0.133 kPa);呼气末正压(positive end expiratony pressure, PEEP)≤5~8 cmH2O(1 cmH2O=0.098 kPa); 吸入氧体积分数(FiO2)≤0.40~0.50;动脉血pH≥7.25;③血流动力学稳定,无心肌缺血动态变化;④有自主呼吸能力。SBT失败标准[15-16]:①呼吸频率/潮气量(rapid shallow breathing index, RSBI)<105次·min-1·L-1;②呼吸频率(respiratory rate, RR)<8次/min或>35次/min;③心率(heart rate, HR)>140次/min或变化>20%,出现新发心律失常;④动脉血氧饱和度(arterial oxygen saturation, SaO2)<90%;⑤患者不耐受SBT, 如躁动、呼吸费力等表现。若患者SBT失败,立即终止SBT进行机械通气治疗。
1.2.2 病例排除标准存在膈肌病变、神经肌肉病变(如格林巴利综合征、重症肌无力等)、气胸、胸腔积液、胸腹部术后、胸膜固定术、气管切开患者及撤机前48 h内使用肌松剂患者等。
1.3 撤机成功与失败标准 1.3.1 撤机成功标准① 通过SBT且拔管后48 h内存活;②撤机后48 h内未再插管或未行无创通气治疗。
1.3.2 撤机失败标准[11, 17]① SBT失败;②撤机后48 h内再插管或需无创通气治疗;③撤机48 h内呼吸骤停或死亡的。
1.4 研究方法达到撤机标准的患者采用T管法行SBT 30 min后进行膈肌超声检查并记录参数。因右侧膈肌肝窗大、受心脏及胃肠气体影响小,便于超声监测时测量,且重复性高,故本项研究选用右侧膈肌超声进行评估,监测期间患者床头抬高取半坐位(30~45°),使用美国索诺声Series S-ICUTM型号超声仪行膈肌超声检查,膈肌超声检查方法:选择凸阵探头(3.5 MHz)沿右侧锁骨中线逐一肋间探查至肋弓下缘交界处,将超声探头向患者背部及头侧倾斜,在B超模式显示出肝脏及膈顶,切换为M超模式,将膈肌运动显示清晰后取样线与长轴形成30°内的夹角并指向膈肌顶部,该切面可进行膈肌移动度(diaphragm excursion, DE)测量(图 1)与计算膈肌RSBI(diaphragmatic-RSBI, D-RSBI=RR/DE)。为减少系统误差,膈肌超声检查指定通过重症超声培训资质的同一名医师执行,共测量3个呼吸周期取平均值。将高频线阵探头(10 MHz)放置在患者腋中线与肋弓交界区9~10肋间后,调整探头平行于肋间隙扫查,当出现2条平行的高回声线时,2条线之间的低弱回声即为膈肌,监测膈肌随呼吸周期运动其厚度发生变化,将膈肌显示清晰后可测量吸气末膈肌厚度和呼气末膈肌厚度(图 2)。参照程滔等[15]研究共测量3个呼吸周期取平均值, 可计算膈肌厚度变化率(diaphragm thickening fraction, DTF)=(吸气末膈肌厚度-呼气末膈肌厚度/呼气末膈肌厚度)×100%。
![]() |
M超模式下膈肌随呼吸运动曲线,DE=吸气末膈肌运动幅度-呼气末膈肌运动幅度。 图 1 膈肌移动度 Fig 1 Diaphragm excursion |
|
![]() |
A:吸气末膈肌厚度;B:呼气末膈肌厚度 图 2 膈肌厚度 Fig 2 Diaphragm thickness |
|
记录两组机械通气患者撤机30 min前年龄、性别、BMI、空腹血糖、ICU住院时间、APACHE-Ⅱ评分、SOFA评分、撤机30 min时血气指标(pH、氧合指数)、心率、呼吸频率、MAP等参数;记录两组患者SBT 30 min时超声指标右侧DE、D-RSBI、DTF, 评估各指标预测成功撤机的敏感度和特异度。
1.6 统计学方法采用SPSS 21.0统计软件进行数据分析处理,符合正态分布的计量资料采用均数±标准差(x±s)表示,经方差齐性检验后采用独立样本t检验将撤机成功组和撤机失败组进行比较;非正态计量资料用中位数(四分位数)[M(Q1, Q3)], 两组间比较采用Wilcox秩和检验。计数资料以百分比(n, %)表示,组间比较采用χ2检验;绘制受试者工作特征曲线(receiver operator characteristic curve, ROC曲线),计算SBT 30 min时右侧DE、DTF、D-RSBI及RSBI的ROC曲线下面积(area under the ROC curve, AUC)及截断值,分析各参数指标对急性呼吸衰竭机械通气患者成功撤机的预测价值。以P<0.05为差异有统计学意义。
2 结果 2.1 基本情况比较本项研究共纳入符合标准的机械通气患者53例,其中撤机成功组36例(67.92%),撤机失败组17例(32.08%)。撤机失败的患者中未通过SBT 2例(3.77%),在拔管后48 h内重新插管4例(7.55%),在拔管后立即给予无创通气支持5例(9.43%),48 h内出现呼吸窘迫给予无创通气治疗6例(11.32%)。撤机成功组和失败组在撤机前30 min一般情况,如年龄、性别、MBI、空腹血糖等方面比较,差异无统计学意义(均P>0.05),但撤机失败组患者ICU住院时间、机械通气时间(MV)、APACHE II评分、SOFA评分高于成功组(均P<0.05),见表 1;SBT 30 min时撤机成功组与失败组血气指标(pH、氧合指数)、MAP比较,差异无统计学意义(均P>0.05);撤机成功组DE、DTF高于失败组(均P<0.05),而撤机失败组心率、呼吸频率、D-RSBI、RSBI高于撤机成功组(均P<0.05),见表 2。
指标 | 成功组 | 失败组 | t/χ2值 | P值 |
年龄(岁,x±s) | 62.18±13.71 | 65.79±17.23 | 10.141 | 0.976 |
男性/女性(例) | 22/14 | 12/5 | 0.097 | 0.811 |
BMI(kg/m2, x±s) | 22.12±2.71 | 20.63±1.89 | 0.246 | 0.884 |
MV(h, x±s) | 52.61±10.71 | 87.46±12.38 | 17.665 | 0.002 |
空腹血糖(mmol/L, x±s) | 5.12±1.21 | 5.23±1.66 | 0.266 | 0.793 |
ICU住院时间(h, x±s) | 4.55±1.93 | 8.16±2.45 | 9.092 | <0.01 |
APACHE-II评分(分,x±s) | 15.35±4.94 | 19.67±7.02 | 2.193 | <0.01 |
SOFA评分(分,x±s) | 3.88±1.71 | 5.23±2.21 | 2.019 | 0.031 |
注:BMI:身体质量指数;MV: 机械通气时间;APACHE-Ⅱ评分:急性生理与慢性健康评分Ⅱ;SOFA评分:序贯器官衰竭评分 |
指标 | 成功组 | 失败组 | t/χ2值 | P值 |
pH(x±s) | 7.36±0.12 | 7.41±0.09 | 1.104 | 0.233 |
OI(mmHg, x±s) | 281.2±82.35 | 271.50±98.22 | 10.151 | 0.889 |
HR(次/min,x±s) | 79.82±10.59 | 96.43±15.59 | 3.171 | 0.015 |
RR(次/min,x±s) | 16.29±3.42 | 26.79±4.11 | 8.106 | <0.001 |
MAP(mmHg, x±s) | 98.36±20.12 | 96.47±21.23 | 0.615 | 0.737 |
DE(cm,x±s)) | 1.23±0.42 | 0.98±0.33 | 0.551 | 0.037 |
D-RSBI[次/(min·mm), x±s] | 1.04±0.31 | 1.74±0.63 | -6.322 | 0.030 |
DTF(%, x±s) | 0.33±0.08 | 0.28±0.07 | 0.133 | 0.041 |
RSBI[次/(min·L), x±s] | 39.21±15.77 | 62.38±18.19 | 6.231 | 0.021 |
注:OI: 氧合指数;HR: 心率;RR:呼吸频率;MAP:平均动脉压;DE:右侧膈肌移动度;D-RSBI:膈肌呼吸浅快指数;DTF:膈肌厚度变化率; RSBI:呼吸浅快指数 |
膈肌移动度ROC曲线结果选取1.21 cm为截断值,预测机械通气患者成功撤机的敏感度为69.0%,特异度为59.0%,其曲线下面积(AUC)为0.929;膈肌厚度变化率ROC曲线结果选取27.5%为截断值,预测机械通气患者成功撤机的敏感度为97.2%,特异度为47.1%,其曲线下面积(AUC)为0.902;膈肌呼吸浅快指数ROC曲线结果选取1.31次/(min·mm)为截断值,预测机械通气患者成功撤机的敏感度为83.0%,特异度为94.1%,其曲线下面积(AUC)为0.959;呼吸浅快指数ROC曲线结果选取48.68次/(min·L)为截断值,预测机械通气患者成功撤机的敏感度为83.0%,特异度为94.1%,其曲线下面积(AUC)为0.975。见图 3。
![]() |
图 3 DE、DTF、D-RSBI及RSBI ROC曲线 Fig 3 The ROC curves of DE, DTF, D-RSBI and RSBI |
|
临床上40%的危重症患者需要机械通气,而脱机失败与高病死率和不利因素如误吸、肺不张、肺炎等明显相关[18]。因此,机械通气患者脱机前临床医生需评估呼吸功能状态,越来越多研究表明膈肌弱化在接受机械通气的患者中普遍存在,并且已证实是脱机失败的一个重要因素[19-20],当患者进行机械通气时,膈肌功能障碍会随通气时间的推移而增加[21-22]。因此,寻找一种单一的预测因子,临床易操作,且能提供膈肌功能的实时图像,对于评估脱机时机显得尤为重要。膈肌超声是一种非侵入性的、操作简单且具有较高的重现性等许多优点,其膈肌移动度(DE)和膈肌厚度变化率(DTF)反映膈肌功能指标被证实可以用来预测机械通气患者脱机的可靠指标[23],这于国内研究者程滔等[15]研究结论相符。常规脱机指标中,RSBI是目前关注度较高的可以预测成功脱机参考标准,但其准确性和个体差异饱受争议。由于RSBI预测指标不评估膈肌的功能状态,故膈肌功能障碍常常被遗漏,这增加了再次气管插管的可能性。本项研究发现DE、DTF、D-RSBI都可以反映患者膈肌功能状态,可作为脱机成功的预测因子,D-RSBI与RSBI评估脱机效能相当,且特异度略优于RSBI,对比程滔等[15]在评估指标上有所创新。研究[24]发现D-RSBI因超声优势可广泛应用于临床,患者依从性高,在准确性和客观性方面要优于RSBI。研究[25]发现D-RSBI在预测成功撤机准确度方面优于传统评估指标RSBI,这与Hoskawa等[24]研究相符。
超声检查可以协助诊断膈肌功能障碍,越来越多研究[26-28]证实机械通气患者预测成功脱机采用超声评估膈肌功能指标具有较高的敏感性和特异性。本项研究发现超声评估膈肌功能指标如DE、DTF、D-RSBI均可预测成功脱机,这于之前研究结果相符,本项研究还发现当D-RSBI<1.31次/(min·mm)时,ROC曲线下面积0.959,其预测成功脱机的敏感性83.0%、特异性94.3%,要优于DE、DTF,可能原因是在单个指标中结合DE和RSBI两方面的评估。Mowafy等[29]和Palkar等[11]研究发现D-RSBI在预测机械通气患者撤机结果方面比DE更准确,D-RSBI的减少与RR增加显著相关,而DE并没有显著减少。DTF反映膈肌在呼吸运动周期中收缩功能,膈肌平均厚度1.5~2.0 mm, 受患者个体、疾病差异、气体干扰等因素影响测量准确性,从而可能导致DTF存在计算误差,本项研究发现评估脱机准确性DTF略好于DE, 这也再次证实膈肌功能良好是成功脱机的保障,这与Li等[30]研究结果相似;Dinino等[9]研究DTF>30%作为界值,预测成功脱机的敏感性88.0%、特异性71.0%,而Rittayami等[31]研究发现TDF与DE在机械通气行SBT时二者并差异无统计学意义。最近的研究[26]指出DE、DTF都是机械通气患者成功脱机较好的预测指标,可以显著降低再插管率。
综上所述,超声膈肌功能评估为重症机械通气患者预测成功脱机提供一种无创、重现性、准确度高的方法,由于目前国内尚属于探索阶段,没有明确的操作准则和相关指南,并不能作为决定性因素进行评估,可作为准确把握机械通气患者撤机时机预测,降低患者再次插管及相关并发症造成的二次伤害具有积极的意义,值得临床推广应用。
利益冲突 所有作者声明无利益冲突
作者贡献声明 张磊:膈肌超声实施、数据采集及论文撰写;陈国忠:研究工作支持,提供研究经费;王华英:研究工作支持,统计学分析指导;俞万钧:研究设计和指导论文撰写
[1] | Zambon M, Greco M, Bocchino S, et al. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a systematic review[J]. Intensive Care Med, 2017, 43(1): 29-38. DOI:10.1007/s00134-016-4524-z |
[2] | Qian Z, Yang M, Li L, et al. Ultrasound assessment of diaphragmatic dysfunction as a predictor of weaning outcome from mechanical ventilation: a systematic review and meta-analysis[J]. BMJ Open, 2018, 8(9): e021189. DOI:10.1136/bmjopen-2017-021189 |
[3] | Jung Y T, Kim M J, Lee J G, et al. Predictors of early weaning failure from mechanical ventilation in critically ill patients after emergency gastrointestinal surgery: A retrospective study[J]. Medicine (Baltimore), 2018, 97(40): e12741. DOI:10.1097/MD.0000000000012741 |
[4] | González-Seguel F, Camus-Molina A, Jasmén A, et al. Respiratory support adjustments and monitoring of mechanically ventilated patients performing early mobilization: a scoping review[J]. Crit Care Explor, 2021, 3(4): e0407. DOI:10.1097/CCE.0000000000000407 |
[5] | Waldauf P, Jiroutková K, Krajčová A, et al. Effects of rehabilitation interventions on clinical outcomes in critically ill patients: systematic review and meta-analysis of randomized controlled trials[J]. Crit Care Med, 2020, 48(7): 1055-1065. DOI:10.1097/CCM.0000000000004382 |
[6] | Eskandar N, Apostolakos M J. Weaning from mechanical ventilation[J]. Crit Care Clin, 2007, 23(2): 263-274. DOI:10.1016/j.ccc.2006.12.002 |
[7] | Doorduin J, Roesthuis L H, Jansen D, et al. Respiratory muscle effort during expiration in successful and failed weaning from mechanical ventilation[J]. Anesthesiology, 2018, 129(3): 490-501. DOI:10.1097/ALN.0000000000002256 |
[8] | Dres M, Goligher E C, Heunks L M A, et al. Critical illness-associated diaphragm weakness[J]. Intensive Care Med, 2017, 43(10): 1441-1452. DOI:10.1007/s00134-017-4928-4 |
[9] | Dinino E, Gartman E J, Sethi J M, et al. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation[J]. Thorax, 2014, 69(5): 423-427. DOI:10.1136/thoraxjnl-2013-204111 |
[10] | Mccool FD, Oyieng'o DO, Koo P. The utility of diaphragm ultrasound in reducing time to extubation[J], 2020, 198(3): 499-505. DOI: 10.1007/s00408-020-00352-3. |
[11] | Palkar A, Mayo P, Singh K, et al. Serial diaphragm ultrasonography to predict successful discontinuation of mechanical ventilation[J]. Lung, 2018, 196(3): 363-368. DOI:10.1007/s00408-018-0106-x |
[12] | Sánchez Sánchez CDM, Molina-Peña M E. Comprehensive assessment of respiratory function, a step towards early weaning from the ventilator[J], 2021, 89(3): 299-310. DOI: 10.5603/ARM.a2021.0055. |
[13] | Ferrari G, De Filippi G, Elia F, et al. Diaphragm ultrasound as a new index of discontinuation from mechanical ventilation[J]. Crit Ultrasound J, 2014, 6(1): 8. DOI:10.1186/2036-7902-6-8.eCollection2014 |
[14] | 刘大为, 邱海波, 于凯江, 等. ICU主治医师手册[M]. 南京: 江苏科学技术出版社, 2016. |
[15] | 程滔, 邢琴, 杨明施, 等. 超声评估膈肌功能对机械通气患者撤机的指导价值[J]. 中华急诊医学杂志, 2020, 29(6): 850-854. DOI:10.3760/cma.j.issn.1671-0282.2020.06.022 |
[16] | 郑清江, 石松菁, 邱陆阵, 等. 肺部超声B线评分联合膈肌移动度在预测撤机成功率的价值研究[J]. 中华急诊医学杂志, 2019, 28(4): 532-536. DOI:10.3760/cma.j.issn.1671-0282.2019.04.027 |
[17] | Palkar A, Narasimhan M, Greenberg H, et al. Diaphragm excursion-time index: a new parameter using ultrasonography to predict extubation outcome[J]. Chest, 2018, 153(5): 1213-1220. DOI:10.1016/j.chest.2018.01.007 |
[18] | Peñuelas O, Frutos-Vivar F, Fernández C, et al. Characteristics and outcomes of ventilated patients according to time to liberation from mechanical ventilation[J]. Am J Respir Crit Care Med, 2011, 184(4): 430-437. DOI:10.1164/rccm.201011-1887OC |
[19] | Jung B, Moury P H, Mahul M, et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure[J]. Intensive Care Med, 2016, 42(5): 853-861. DOI:10.1007/s00134-015-4125-2 |
[20] | Dres M, Demoule A. Beyond ventilator-induced diaphragm dysfunction: new evidence for critical illness-associated diaphragm weakness[J]. Anesthesiology, 2019, 131(3): 462-463. DOI:10.1097/ALN.0000000000002825 |
[21] | Goligher E C, Fan E, Herridge M S, et al. Evolution of diaphragm thickness during mechanical ventilation. impact of inspiratory effort[J]. Am J Respir Crit Care Med, 2015, 192(9): 1080-1088. DOI:10.1164/rccm.201503-0620OC |
[22] | 罗杰英, 韩小彤, 毛淑贞, 等. 早期体外膈肌起搏对机械通气患者的影响研究[J]. 中华急诊医学杂志, 2022, 31(6): 794-797. DOI:10.3760/cma.j.issn.1671-0282.2020.06.022 |
[23] | Mayo P, Volpicelli G, Lerolle N, et al. Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung[J]. Intensive Care Med, 2016, 42(7): 1107-1117. DOI:10.1007/s00134-016-4245-3 |
[24] | Hosokawa T, Takahashi H, Tanami Y, et al. Usefulness of ultrasound in evaluating the diaphragm in neonates and infants with congenital diaphragmatic hernias[J]. J Ultrasound Med, 2019, 38(4): 1109-1113. DOI:10.1002/jum.14777 |
[25] | Whebell S, Sane S, Naidu S, et al. Use of ultrasound to determine changes in diaphragm mechanics during a spontaneous breathing trial[J]. J Intensive Care Med, 2021, 36(9): 1044-1052. DOI:10.1177/0885066620943164 |
[26] | Alam M J, Roy S, Iktidar M A, et al. Diaphragm ultrasound as a better predictor of successful extubation from mechanical ventilation than rapid shallow breathing index[J]. Acute Crit Care, 2022, 37(1): 94-100. DOI:10.4266/acc.2021.01354 |
[27] | Kilaru D, Panebianco N, Baston C. Diaphragm ultrasound in weaning from mechanical ventilation[J]. Chest, 2021, 159(3): 1166-1172. DOI:10.1016/j.chest.2020.12.003 |
[28] | Spiesshoefer J, Henke C, Herkenrath S D, et al. Noninvasive prediction of twitch transdiaphragmatic pressure: insights from spirometry, diaphragm ultrasound, and phrenic nerve stimulation studies[J]. Respiration, 2019, 98(4): 301-311. DOI:10.1159/000501171 |
[29] | Mowafy S A E. Diaphragmatic rapid shallow breathing index for predicting weaning outcome from mechanical ventilation: comparison with traditional rapid shallow breathing index[J]. Egypt J Anaesth, 2019, 35(1): 9-17. DOI:10.1186/s12890-022-02133-5 |
[30] | Li S, Chen Z, Yan W. Application of bedside ultrasound in predicting the outcome of weaning from mechanical ventilation in elderly patients[J]. BMC Pulm Med, 2021, 21(1): 217. DOI:10.1186/s12890-021-01605-4 |
[31] | Rittayamai N, Hemvimon S, Chierakul N. The evolution of diaphragm activity and function determined by ultrasound during spontaneous breathing trials[J]. J Crit Care, 2019, 51: 133-138. DOI:10.1016/j.jcrc.2019.02.016 |