有创机械通气(intermittent mandatory ventilation, IMV)是呼吸衰竭患者的重要生命支持手段,然而长时间的IMV会引起呼吸机相关性并发症显著增多, 导致患者的病死率明显增加[1-2]。研究发现IMV撤机失败大多与呼吸肌乏力、心肺负荷过重,严重营养不良、肌肉萎缩等因素密切相关[3-5]。目前IMV撤机的评价指标较多,大多存在繁杂、有创、准确性不高等缺陷[3]。重症超声作为急重症医师的有力武器,在临床上应用越来越广泛,可被用于评估、分析患者呼吸衰竭和IMV撤机失败的原因。通过重症超声监测下腔静脉变异度(inferior vena cava variability,ΔDIVC)可预测患者的容量反应性,目前越来越多的研究发现,IMV撤机成功患者的容量反应性明显高于撤机失败的患者[6]。危重症患者早期,就会出现严重的肌肉萎缩和功能障碍[7],易导致IMV撤机困难,住院时间延长[8]。本研究旨在通过重症超声探查ΔDIVC联合股直肌萎缩分数,评价其对IMV撤机的预测能力。
1 资料与方法 1.1 研究对象本研究采用前瞻性研究,选取2021年1月至2021年12月在宜兴市人民医院ICU治疗的IMV患者60例。本研究通过医院伦理委员会批准(审批号:伦审2020科033),并签署家属知情同意书。
入组标准:(1)所有患者均经口气管插管且IMV时间 > 5 d;(2)年龄 > 60岁;(3)通过机械通气撤机筛查标准的患者进行2 h自主呼吸试验(spontaneous breathing trial, SBT)[9]。
排除标准:(1)有明确神经肌肉疾病者;(2)妊娠者;(3)大量腹腔积液、肠道积气等影响下腔静脉直径采集者;(4)多器官功能严重受损者。
1.2 研究方法 1.2.1 分组通过2 h SBT后立即拔除气管插管,根据拔管时间和拔管后患者自主呼吸情况,将入组的IMV患者分为撤机成功组和撤机失败组,如拔管时间超过48 h,且能维持正常自主呼吸者视为撤机成功,反之视为撤机失败[10]。
1.2.2 临床资料获取记录患者的性别、年龄、体重指数(body mass index,BMI)、急性生理与慢性健康状态Ⅱ(acute physiology and chronic health evaluation Ⅱ,APACHE Ⅱ)评分、入院至首次SBT时的IMV时间、二氧化碳分压(PCO2)、氧合指数(PO2/FiO2)、乳酸等。
1.2.3 ΔDIVC测量在SBT前患者取平卧位,使用飞利浦EPIQ7C型心脏超声仪(探头S5-1,频率范围1~5 MHz),在剑突下放置探头,获取标准下腔静脉长轴图像,测量靠近右心房入口2 cm处下腔静脉直径的最大值(DIVCmax)和最小值(DIVCmin),重复超声测量3次,然后取平均值,并根据公式计算DDIVC,ΔDIVC=2×(DIVCmax−DIVCmin)/(DIVCmax+DIVCmin)×100%。
1.2.4 股直肌横截面积测量由同一位经超声专科培训的急诊医学科医师分别在患者入院第1天、第4天和首次SBT时,使用配有5~12 MHz探头的Philips IU 22超声仪进行股直肌横截面积测量。患者取仰卧位,双腿伸直,双足轻度垫高,下肢制动10 min后,在髂前上嵴与髌骨上缘连线中下1/3的位置,垂直股骨干放置探头,使股直肌和其正下方的股中间肌能被清晰分辨,分别测量左、右两侧股直肌面积[11-12],然后取平均值。依据公式计算股直肌萎缩分数,股直肌萎缩分数=[1−(入院第1天股直肌横截面积−首次SBT时股直肌横截面积)/入院第1天股直肌横截面积]×100%。
1.3 统计学方法使用SPSS 23.0软件对所记录的数据进行分析,其中计量和计数资料分别以均数±标准差(x±s)和例数(%)表示,采用t检验或者卡方检验进行分析。入院后各时间点股直肌面积的比较采用单因素ANOVA分析,而事后各时间点股直肌面积的多重两两比较采用Bonferroni法分析。ΔDIVC和股直肌萎缩分数的相关性应用Pearson相关性分析;采用二元Logistic回归模型分析ΔDIVC和股直肌萎缩分数是否影响机械通气患者的撤机结局;通过绘制ROC曲线,计算ΔDIVC、股直肌萎缩分数和二者联合预测撤机成功的AUC,评价各预测指标的诊断效能。以P < 0.05为差异有统计学意义。
2 结果 2.1 临床资料比较撤机前两组患者性别、年龄、BMI、APACHE Ⅱ评分、入院至首次SBT时机械通气时间、PCO2、PO2/FiO2和乳酸差异均无统计学意义(均P > 0.05)。见表 1。
组别 | 男/女(例) | 年龄(岁) | BMI(kg/m2) | APACHE Ⅱ评分(分) | 入院至首次SBT时IMV时间(d) | PCO2 (mmHg) | PO2/FiO2 (mmHg) | 乳酸(mmol/L) |
撤机成功组(n=38) | 22/16 | 73.13±7.24 | 24.66±3.47 | 16.08±2.87 | 8.79±2.26 | 46.24±10.10 | 266.03±34.49 | 2.22±1.03 |
撤机失败组(n=22) | 12/10 | 75.27±8.54 | 25.77±4.50 | 17.14±3.52 | 9.50±2.99 | 50.45±12.51 | 253.09±40.35 | 2.46±1.16 |
t/χ2值 | 0.64 | -1.033 | -1.073 | -1.264 | -1.042 | -1.427 | 1.315 | -0.813 |
P值 | 0.80 | 0.306 | 0.288 | 0.211 | 0.302 | 0.159 | 0.194 | 0.419 |
注:BMI为体重指数;APACHE Ⅱ为急性生理与慢性健康状态Ⅱ评分;IMV为有创机械通气;PCO2为动脉血二氧化碳分压;PO2/FiO2为氧合指数;1 mmHg=0.133 kPa |
随ICU住院时间延长,两组股直肌横截面积逐渐缩小(均P < 0.05),首次SBT时股直肌横截面积明显低于入院第1天(均P < 0.05),但组间比较差异均无统计学意义(均P > 0.05)。见表 2。
组别 | 股直肌横截面积(cm2) | F值 | P值 | ||
入院第1天 | 入院第4天 | 首次SBT时 | |||
撤机成功组 | 3.08±0.98 | 2.84±0.92 | 2.54±0.88a | 3.266 | 0.042 |
撤机失败组 | 3.02±1.10 | 2.69±1.00 | 2.22±0.87a | 3.625 | 0.032 |
t值 | 0.198 | 0.591 | 1.356 | ||
P值 | 0.844 | 0.557 | 0.180 | ||
注:SBT为自主呼吸试验;与入院第1天比较,aP < 0.05 |
撤机成功组ΔDIVC和股直肌萎缩分数显著高于撤机失败组(均P < 0.05)。见表 3。
分组 | ΔDIVC(%) | 股直肌萎缩分数(%) |
撤机成功组 | 25.02±4.65 | 81.89±5.09 |
撤机失败组 | 20.30±3.16 | 72.68±8.98 |
t值 | 4.226 | 4.415 |
P值 | < 0.001 | < 0.001 |
注:ΔDIVC为下腔静脉变异度 |
ΔDIVC和股直肌萎缩分数呈正相关(r=0.346,P=0.007)。
2.5 对撤机结局产生影响的因素分析以撤机结局为因变量,以ΔDIVC和股直肌萎缩分数为协变量,二元Logistic回归分析显示,ΔDIVC和股直肌萎缩分数均是影响撤机成功的影响因素(均P < 0.05)。见表 4。
相关因素 | β | S.E. | Wald | 自由度 | P | Exp(β) | 95%CI | |
下限 | 上限 | |||||||
ΔDIVC | 0.222 | 0.087 | 6.526 | 1 | 0.011 | 1.249 | 1.053 | 1.481 |
股直肌萎缩分数 | 0.185 | 0.064 | 8.297 | 1 | 0.004 | 1.203 | 1.061 | 1.364 |
注:ΔDIVC为下腔静脉变异度 |
根据ΔDIVC和股直肌萎缩分数回归系数得出二者联合的计算公式:联合=ΔDIVC +(0.185/0.222)×股直肌萎缩分数,计算联合数据进行统计分析。ROC曲线结果显示,二者联合预测撤机成功的AUC和约登指数最大,股直肌萎缩分数次之,ΔDIVC最小,说明二者联合预测诊断价值最优。见表 5和图 1。
指标 | AUC | 95%CI | P值 | 最佳临界值 | 敏感度(%) | 特异度(%) | 约登指数(%) |
ΔDIVC | 0.791 | 0.677~0.905 | < 0.001 | 23.71% | 68.4 | 81.8 | 50.2 |
股直肌萎缩分数 | 0.826 | 0.711~0.941 | < 0.001 | 78.42% | 76.3 | 86.4 | 62.7 |
联合 | 0.880 | 0.795~0.966 | < 0.001 | 90.53% | 73.7 | 90.9 | 64.6 |
注:AUC为曲线下面积;Δ DIVC为下腔静脉变异度 |
![]() |
ΔDIVC为下腔静脉变异度 图 1 ΔDIVC、股直肌萎缩分数和二者联合预测撤机成功的ROC曲线 Fig 1 ΔDIVC, rectus femoris atrophy score and combined predictive ROC curve of weaning success |
|
撤机是机械通气治疗过程中的重要阶段,过早或过晚撤机都将对患者产生不利影响,准确把握撤机时机尤为重要。当IMV原因得到有效纠正,应尽早进行IMV撤机和拔除气管插管[13]。目前IMV撤机拔管的流程推荐通过SBT后拔管[14],然而即便成功通过SBT后拔除气管插管,再次气管插管率仍在10%~25%[15],老年患者、心肺功能较差者,再插管率更高。本研究共收集病例60例,其中22例成功拔管后再次行气管插管,再插管率为36%。
IMV状态下,使患者胸腔内压和右心后负荷明显升高,导致回心血量减少,最终引起心输出量下降。然而由IMV支持转变为自主呼吸过程中,胸腔内压由正压变为负压,腔静脉回流增加,左心前负荷和心脏做功较撤机前明显增加,可使撤机后心肌氧耗明显增加[16]。当患者心功能不能有效代偿时,易出现心功能相关性肺水肿,导致IMV撤机拔管失败[17]。ΔDIVC是评估容量反应性的有效指标[18],可反映心脏对容量负荷增加的耐受能力,即可判断在心功能曲线所处的位置。步涨等[19]研究发现,ΔDIVC预测心功能不全患者撤机困难的AUC达0.839,当ΔDIVC≤0.25时,预测撤机困难的敏感度和特异度分别为为69.5%、94.7%。既往研究表明,液体平衡与拔管结局密切相关[20],液体正平衡是导致撤机拔管失败的重要危险因素,而液体负平衡有利于提高撤机拔管成功率[21]。本研究发现,撤机成功组ΔDIVC明显高于撤机失败组,说明撤机拔管前通过控制液体入量、加强利尿等液体负平衡措施,降低左心前负荷,有利于增大ΔDIVC,可提高IMV撤机拔管的成功率。
既往研究发现,在IMV数小时后,患者便可以出现ICU获得性衰弱,表现为不同部位的肌肉组织数量和质量下降,易导致撤机失败率明显增加[22-23]。Fan等[24]研究发现,在ICU住院期间,25%~75%的机械通气危重患者出现了骨骼肌萎缩和肌无力。Dres等[25]研究共纳入76名IMV患者,在首次SBT评估时有63%的患者出现了膈肌功能障碍,34%的患者出现了四肢肌无力,21%的患者两者同时存在,并且患者出现四肢肌无力与较长时间的IMV和住院密切相关。本研究亦发现,随着ICU住院时间和IMV时间的延长,两组患者股直肌横截面积均发生不同程度的缩小,且两组患者首次SBT时股直肌面积明显低于入院第1天,并且撤机成功组股直肌萎缩分数明显小于撤机失败组。说明撤机结局与股直肌横截面积萎缩程度存在相关性,股直肌横截面积萎缩程度越小,撤机成功率越高。
以ΔDIVC和股直肌萎缩分数作为撤机指标,相关性分析显示两者预测撤机结局具有很好的正相关性(r=0.346)。股直肌萎缩分数预测撤机成功的AUC为0.836,大于ΔDIVC(AUC=0.791),同时股直肌萎缩分数的敏感度和特异度也高于ΔDIVC。说明股直肌萎缩分数作为撤机预测指标优于ΔDIVC。而两者联合进行预测撤机成功的AUC提高至0.880,敏感度为73.7%,特异度为90.9%,说明两者联合具有更好的预测效能。
本研究的局限性:本研究样本量较小,同时,超声测量ΔDIVC和股直肌横截面积精确性需进一步提升,后期可进一步扩大研究样本数量,优化实验设计和数据采集,提高ΔDIVC联合股直肌萎缩分数预测撤机成功的准确性。
综上所述,ΔDIVC联合股直肌萎缩分数能较为准确地预测IMV撤机结局,可用于撤机评估和指导,具有一定的临床应用前景。
利益冲突 所有作者声明无利益冲突
作者贡献声明 吴衡:研究设计、论文撰写及修改;朱超云:数据审核、论文撰写;刘媛:数据收集及整理;蒋宝虎:统计学分析、论文修改
[1] | Mayo P, Volpicelli G, Lerolle N, et al. Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung[J]. Intensive Care Med, 2016, 42(7): 1107-1117. DOI:10.1007/s00134-016-4245-3 |
[2] | Thille AW, Richard JC, Brochard L. The decision to extubate in the intensive care unit[J]. Am J Respir Crit Care Med, 2013, 187(12): 1294-1302. DOI:10.1164/rccm.201208-1523CI |
[3] | Alam MJ, Roy S, Iktidar MA, et al. Diaphragm ultrasound as a better predictor of successful extubation from mechanical ventilation than rapid shallow breathing index[J]. Acute Crit Care, 2022, 37(1): 94-100. DOI:10.4266/acc.2021.01354 |
[4] | Papanikolaou J, Makris D, Saranteas T, et al. New insights into weaning from mechanical ventilation: left ventricular diastolic dysfunction is a key player[J]. Intensive Care Med, 2011, 37(12): 1976-1985. DOI:10.1007/s00134-011-2368-0 |
[5] | Heunks LM, van der Hoeven JG. Clinical review: the ABC of weaning failure: a structured approach[J]. Crit Care, 2010, 14(6): 245. DOI:10.1186/cc9296 |
[6] | 窦志敏, 曹永强, 刘欣, 等. 超声监测下腔静脉变异度对机械通气患者撤机结果的预测价值[J]. 中华超声影像学杂志, 2019, 28(2): 118-122. DOI:10.3760/cma.j.issn.1004-4477.2019.02.006 |
[7] | Herridge MS, Moss M, Hough CL, et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers[J]. Intensive Care Med, 2016, 42(5): 725-738. DOI:10.1007/s00134-016-4321-8 |
[8] | Batt J, Herridge M, dos Santos C. Mechanism of ICU-acquired weakness: skeletal muscle loss in critical illness[J]. Intensive Care Med, 2017, 43(12): 1844-1846. DOI:10.1007/s00134-017-4758-4 |
[9] | Sklar MC, Burns K, Rittayamai N, et al. Effort to breathe with various spontaneous breathing trial techniques. A physiologic meta-analysis[J]. Am J Respir Crit Care Med, 2017, 195(11): 1477-1485. DOI:10.1164/rccm.201607-1338OC |
[10] | Mogase LG, Koto MZ. Failed extubation in a tertiary-level hospital intensive care unit, Pretoria, South Africa[J]. South Afr J Crit Care, 2021, 37(3): 10.7196/SAJCC. 2021. v37i3.446. . DOI: 10.7196/SAJCC.2021.v37i3.446. |
[11] | de Andrade-Junior MC, de Salles ICD, de Brito CMM, et al. Skeletal muscle wasting and function impairment in intensive care patients with severe COVID-19[J]. Front Physiol, 2021, 12: 640973. DOI:10.3389/fphys.2021.640973 |
[12] | Deng MM, Zhou XM, Li YX, et al. Ultrasonic elastography of the rectus femoris, a potential tool to predict sarcopenia in patients with chronic obstructive pulmonary disease[J]. Front Physiol, 2021, 12: 783421. DOI:10.3389/fphys.2021.783421 |
[13] | Blackwood B, Alderdice F, Burns K, et al. Use of weaning protocols for reducing duration of mechanical ventilation in critically ill adult patients: Cochrane systematic review and meta-analysis[J]. BMJ, 2011, 342: c7237. DOI:10.1136/bmj.c7237 |
[14] | Quintard H, l'Her E, Pottecher J, et al. Experts' guidelines of intubation and extubation of the ICU patient of French Society of Anaesthesia and Intensive Care Medicine (SFAR) and French-speaking Intensive Care Society (SRLF): in collaboration with the pediatric Association of French-speaking Anaesthetists and Intensivists (ADARPEF), French-speaking Group of Intensive Care and Paediatric emergencies (GFRUP) and Intensive Care physiotherapy society (SKR)[J]. Ann Intensive Care, 2019, 9(1): 13. DOI:10.1186/s13613-019-0483-1 |
[15] | Subirà C, Hernández G, Vázquez A, et al. Effect of pressure support vs T-piece ventilation strategies during spontaneous breathing trials on successful extubation among patients receiving mechanical ventilation: a randomized clinical trial[J]. JAMA, 2019, 321(22): 2175-2182. DOI:10.1001/jama.2019.7234 |
[16] | Bedet A, Tomberli F, Prat G, et al. Myocardial ischemia during ventilator weaning: a prospective multicenter cohort study[J]. Crit Care, 2019, 23(1): 321. DOI:10.1186/s13054-019-2601-8 |
[17] | Roche-Campo F, Bedet A, Vivier E, et al. Cardiac function during weaning failure: the role of diastolic dysfunction[J]. Ann Intensive Care, 2018, 8(1): 2. DOI:10.1186/s13613-017-0348-4 |
[18] | Huang HJ, Shen QK, Liu YF, et al. Value of variation index of inferior vena cava diameter in predicting fluid responsiveness in patients with circulatory shock receiving mechanical ventilation: a systematic review and meta-analysis[J]. Crit Care, 2018, 22(1): 204. DOI:10.1186/s13054-018-2063-4 |
[19] | 步涨, 潘纯, 王俊, 等. 超声监测下腔静脉变异度对心功能不全患者困难撤机的预测价值[J]. 临床超声医学杂志, 2017, 19(6): 371-374. DOI:10.16245/j.cnki.issn1008-6978.2017.06.004 |
[20] | Barmparas G, Liou D, Lee D, et al. Impact of positive fluid balance on critically ill surgical patients: a prospective observational study[J]. J Crit Care, 2014, 29(6): 936-941. DOI:10.1016/j.jcrc.2014.06.023 |
[21] | Li T, Zhou DW, Zhao D, et al. Association between fluid intake and extubation failure in intensive care unit patients with negative fluid balance: a retrospective observational study[J]. BMC Anesthesiol, 2022, 22(1): 170. DOI:10.1186/s12871-022-01708-3 |
[22] | Lad H, Saumur TM, Herridge MS, et al. Intensive care unit-acquired weakness: not just another muscle atrophying condition[J]. Int J Mol Sci, 2020, 21(21): 7840. DOI:10.3390/ijms21217840 |
[23] | Vanhorebeek I, Latronico N, van den Berghe G. ICU-acquired weakness[J]. Intensive Care Med, 2020, 46(4): 637-653. DOI:10.1007/s00134-020-05944-4 |
[24] | Fan E, Cheek F, Chlan L, et al. An official American Thoracic Society Clinical Practice guideline: the diagnosis of intensive care unit-acquired weakness in adults[J]. Am J Respir Crit Care Med, 2014, 190(12): 1437-1446. DOI:10.1164/rccm.201411-2011ST |
[25] | Dres M, Dubé BP, Mayaux J, et al. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients[J]. Am J Respir Crit Care Med, 2017, 195(1): 57-66. DOI:10.1164/rccm.201602-0367OC |