中华急诊医学杂志  2023, Vol. 32 Issue (4): 447-451   DOI: 10.3760/cma.j.issn.1671-0282.2023.04.001
中性粒细胞胞外陷阱在新型冠状病毒感染中的作用与机制
李妍 , 孙翰 , 朱华栋     
中国医学科学院北京协和医学院,北京协和医院急诊科,疑难重症及罕见病国家重点实验室,北京 100730

在人体众多的免疫细胞中,中性粒细胞发挥了重要的作用。中性粒细胞占血液白细胞的60%,是人体主要的免疫细胞,在抵抗病原中处于一线位置。中性粒细胞是一种寿命短而快速更新的细胞,大量中性粒细胞常驻于肺部,参与肺部的免疫反应。目前的研究显示,中性粒细胞在对抗病毒感染中也发挥了重要作用,但另一方面,中性粒细胞在免疫损伤及急性肺损伤的发展中也起到了作用。最近研究发现,中性粒细胞的活化以及中性粒细胞胞外陷阱(neutrophil extracellular traps,NETs)的生成在新型冠状病毒感染(COVID-19)的发病及进展中起到了关键作用,对其作用与机制的认识有助于进一步揭示COVID-19的复杂发病机制,为其治疗提供新的思路与靶点。

1 NETs的发现及其作用

NETs最早发现于1996年[1],中性粒细胞通过释放NETs以强化其抗菌特性。NETs主要成分为胞外染色质,另有组蛋白以及多种颗粒状蛋白质[2],其作为先天免疫的重要组成部分,可能发挥有益或有害的作用[3]。中性粒细胞在接触刺激物(细菌、真菌、病毒、炎症因子等)后活化,并通过PKC-Raf/MERK/ERK→NADPH氧化酶(NOX)→MPO/NE/PAD4通路激活PAD4,PAD4又通过催化组蛋白的瓜氨酸化促进染色质脱缩,另一方面,活性氧(ROS)通过分解核膜,促进NETs通过核孔释放出细胞核。最终,随着细胞裂解,丝氨酸化的组蛋白(citH3)、DNA以及其他胞内颗粒状蛋白质共同形成NETs4。NETs呈网状结构,可以通过捕获病原后直接通过细胞毒作用杀伤病原体,或促进其他中性粒细胞及噬菌细胞吞噬病原体,进而保护机体[5-6]。有学者据此提出了NETosis,将其定义为在中性粒细胞凋亡过程中形成NETs的过程[3]

因其释放的物质具有非选择性,NETs是一把双刃剑。一方面,其具有杀菌活性,是人体固有免疫的重要组成部分,而另一方面,NETs也可能导致失控的炎症反应(包括直接细胞损伤、其他促炎细胞/炎症介质募集、自身抗体形成等)[7-8]。研究显示,在恶性肿瘤患者中,NETs可以通过捕获肿瘤细胞加重病情[9];在糖尿病患者中,NETs会导致伤口延迟愈合[10];NETs还能与血小板反应生成HMGB1,进而促进血栓的形成[11]

2 中性粒细胞胞外陷阱在COVID-19中的研究

COVID-19是由SARS-CoV-2引起的全球广泛流行的传染病,其可出现各种靶器官损伤。其中,ALI和急性呼吸窘迫综合征(ARDS)是最严重的肺部表现,而常见的肺外表现包括急性心肌损伤、神经系统病变、胰腺损伤、急性肾损伤以及血栓形成。SARS-CoV-2病毒通过识别血管紧张素转化酶2(ACE2,广泛分布于身体各种细胞,尤其是肺泡细胞Ⅱ、近端肾小管、免疫细胞、小肠)来攻击人体细胞。SARS-CoV-2与ACE2的结合常常导致血管紧张素Ⅱ(AngⅡ)的丰度提升[13]

COVID-19患者中常见淋巴细胞显著减少,而中性粒细胞则显著升高,中性-淋巴比是COVID-19严重度的独立危险因素[14]。在COVID-19患者尸检中,可以见到大量中性粒细胞浸润(表现为中性粒细胞性黏膜炎、急性毛细血管炎、纤维蛋白沉积伴中性粒细胞外渗)[15]。有研究显示,ALI/ARDS的进展与NETs的形成相关。SARS-CoV-2跟其他病毒一样,可以通过直接及间接手段激活NETs及NETosis,NETs激活IL-1β,而IL-1 β又进一步激活NETs,形成正循环[16]。NETs还可以激活巨噬细胞形成类似NETs的METs[17],NETs对血管内皮及肺泡上皮细胞具有极强的毒性,且NETs可以进一步促进促炎因子的释放,可能导致失控的炎症风暴,进而导致ALI/ARDS[18]。有回顾性研究显示,中性粒细胞的活化、NETs的生成与ALI以及高肺部CT评分相关[19]

有大量研究显示,严重SARS-CoV-2感染与血栓形成相关,在大量COVID-19患者中观察到了血栓形成,这可能与微血管损伤、血管内皮功能障碍相关[20]。有研究显示,血浆内高水平的NETs与小鼠静脉血栓形成相关[21],这可能提示NETs在COVID-19患者血栓形成过程也发挥了重要作用。在炎症反应中,血小板细胞膜上活化的TLR4可以促进中性粒细胞释放NETs,而NETs通过P-selectin激活血小板,进而促进血栓形成[22]。在严重SARS-CoV-2感染中,失控的血小板过度活化可导致病理性血栓形成,尤其在肺脏及肾脏的微循环中,常导致ALI及AKI[23-24]。另有研究显示,SARS-CoV-2感染诱导的补体激活,主要是C3,也可以诱导血栓的形成[25-26]。其他NETs激活凝血的通路还包括血小板磷脂激活激肽系统[27]、减低凝血酶Ⅲ活性[28]、炎症因子激活内外源性凝血途径[29]等。

COVID-19患者的合并症与NETs密切相关。在合并糖尿病的COVID-19患者中,高血糖促进中性粒细胞形成NETs,也促进中性粒细胞合成钙结合蛋白S100 A8/A9,进而促进血栓形成[30];另一方面,在合并心血管病(如高血压、冠心病、急性心肌损伤)的COVID-19患者中,SARS-CoV-2导致ACE2下调,进而促进NETs的形成,最终诱导内皮细胞损伤、血栓形成以及肺动脉压力上升[31];在肥胖患者中,脂肪组织的炎症细胞浸润导致NETs的过度活化,从而加重病情[32]

3 NETs抑制剂在COVID-19中的应用

内源性NETs抑制剂,如nNIF,通过抑制NETs形成过程中的关键因子来抑制NETs的生成。nNIF在胎儿循环系统中广泛存在,负责介导出生前后的免疫耐受[33],有研究显示nNIF可以减轻RSV诱导的NETs生成[34]。前列腺素(PGs)是一类COX催化生成的花生四烯酸,其也可以抑制NETs;研究显示,PGE2可以通过cAMP抑制NETosis和NETs[35],COX2的过度表达与NETs减少、免疫抑制相关。血栓调节蛋白(thrombomodolin)主要表达在血管内皮细胞,其与凝血酶组成的复合物可激活蛋白激酶C,而蛋白激酶C在抗凝中起重要作用[36]。研究显示,人重组血栓调节蛋白(rhTM)抑制NETs及NETosis[37]。活化蛋白C(APC)是一种丝氨酸蛋白酶,其可抑制组蛋白的释放以及NETs的聚集[38],有基础研究显示,APC可以通过抑制NETs保护SARS-CoV-2介导的内皮损伤以及血小板凝集[39]。HMGB1是一种血小板生成的内源性蛋白,通过cGMP介导NETs及NETosis的活化[40],抗HMGB1抗体可能作为COVID-19治疗的潜在靶点[41]。C1酯酶抑制剂(CIE-INH)是一种C1的抑制剂,可以起到抑制NETs以及NETosis的作用[42],有个案显示,COVID-19患者在应用CIE-INH后快速好转[43]。肝素也是一种NETs抑制剂[44],肝素治疗在重症COVID-19患者治疗中可发挥一定作用,但NETs在该过程中所发挥的作用仍需进一步讨论[45]。DNA酶可以通过裂解DNA抑制NETs,重组人DNA酶(rhDNAase)已经被证实可用于治疗严重脓毒血症[46]

除了上述内源性NETs抑制剂外,研究也发现了一些外源性NETs抑制剂。大环内酯类抗生素已被证实可以通过抑制NETs起到抑炎作用[47],多西环素也可起到类似作用[13]。阿司匹林是一种广泛应用的抗血小板药物,而血小板的活化在NETs形成中发挥了重要作用[48],研究显示,阿司匹林具有抑制NETs的生物活性[49],已经有小规模临床研究显示阿斯匹林可改善COVID-19患者的预后[50]。Sivelestat,一种NEase抑制剂[51],在临床前研究中显示出治疗ARDS的价值[52]。氯胺是蛋白精氨酸脱亚胺酶(PAD)抑制剂,而PAD在NETs合成以及免疫调节中发挥作用[53]。另外,在环孢素A[54]、DPI[55]、二甲双胍[56]、羟氯喹[57]、乙酰半胱氨酸[58]、维生素D[59]等药物中也发现了NETs抑制活性。

4 问题与展望

综上所述,中性粒细胞的活化以及NETs的生成在COVID-19的发病及进展中起到了关键作用,已经有少量的临床研究以该通路作为靶点进行探索。但另一方面,目前针对NETs的研究仍然极其有限,NETs的产生、进展以及消退仍有大量机制尚未被阐明。尽管很多研究认为,NETs的过度富集会诱导炎症风暴以及血栓形成,从而对机体造成免疫损伤,但另有研究显示,在小鼠痛风模型中,NETs的富集可以通过减少炎症因子的生成,进而减轻炎症反应[60]

虽然目前已经发现了部分NETs抑制剂,也在其他多种药物中发现了抗NETs的活性,但针对此类药物的临床研究仍然极少,目前仅有少部分的研究探索了NETs抑制剂在体外实验以及动物模型中的应用,更进一步的临床试验寥寥无几,且目前无相关药物的大规模临床研究。此外,此类研究所应用的药物存在多重机制,其针对NETs的抑制效果在治疗中所起的作用仍未可知。

在NETs以及NETosis发现近30年来,我们对该通路的理解逐渐深入,其在免疫反应中所发挥的作用也逐渐为人所了解,但仍有很多机制尚未被阐明,而针对该通路的药物则寥寥无几,未来仍需要进一步深入的研究。

利益冲突  所有作者声明无利益冲突

参考文献
[1] Takei H, Araki A, Watanabe H, et al. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis[J]. J Leukoc Biol, 1996, 59(2): 229-240. DOI:10.1002/jlb.59.2.229
[2] Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils Die to make NETs[J]. Nat Rev Microbiol, 2007, 5(8): 577-582. DOI:10.1038/nrmicro1710
[3] Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin?[J]. J Cell Biol, 2012, 198(5): 773-783. DOI:10.1083/jcb.201203170
[4] Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics[J]. Clinic Rev Allerg Immunol, 2021, 61(2): 194-211. DOI:10.1007/s12016-020-08804-7
[5] Wang YM, Li M, Stadler S, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation[J]. J Cell Biol, 2009, 184(2): 205-213. DOI:10.1083/jcb.200806072
[6] Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens[J]. Nat Immunol, 2014, 15(11): 1017-1025. DOI:10.1038/ni.2987
[7] Bruschi M, Bonanni A, Petretto A, et al. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis[J]. J Rheumatol, 2020, 47(3): 377-386. DOI:10.3899/jrheum.181232
[8] Petretto A, Bruschi M, Pratesi F, et al. Neutrophil extracellular traps (NET) induced by different stimuli: a comparative proteomic analysis[J]. PLoS One, 2019, 14(7): e0218946. DOI:10.1371/journal.pone.0218946
[9] Park J, Wysocki RW, Amoozgar Z, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps[J]. Sci Transl Med, 2016, 8(361): 361ra138. DOI:10.1126/scitranslmed.aag1711
[10] Liu D, Yang PL, Gao M, et al. NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound[J]. Clin Sci (Lond), 2019, 133(4): 565-582. DOI:10.1042/CS20180600
[11] Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood[J]. Nat Med, 2007, 13(4): 463-469. DOI:10.1038/nm1565
[12] Al-Kuraishy HM, Al-Gareeb AI, Alblihed M, et al. COVID-19 and risk of acute ischemic stroke and acute lung injury in patients with type Ⅱ diabetes mellitus: the anti-inflammatory role of metformin[J]. Front Med (Lausanne), 2021, 8: 644295. DOI:10.3389/fmed.2021.644295
[13] Al-Kuraishy HM, Al-Gareeb AI, Qusty N, et al. Sequential doxycycline and colchicine combination therapy in Covid-19:the salutary effects[J]. Pulm Pharmacol Ther, 2021, 67: 102008. DOI:10.1016/j.pupt.2021.102008
[14] Jimeno S, Ventura PS, Castellano JM, et al. Prognostic implications of neutrophil-lymphocyte ratio in COVID-19[J]. Eur J Clin Invest, 2021, 51(1): e13404. DOI:10.1111/eci.13404
[15] Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19:Neutrophil extracellular traps[J]. J Exp Med, 2020, 217(6): e20200652. DOI:10.1084/jem.20200652
[16] Yaqinuddin A, Kvietys P, Kashir J. COVID-19:role of neutrophil extracellular traps in acute lung injury[J]. Respir Investig, 2020, 58(5): 419-420. DOI:10.1016/j.resinv.2020.06.001
[17] Toor D, Jain A, Kalhan S, et al. Tempering macrophage plasticity for controlling SARS-CoV-2 infection for managing COVID-19 disease[J]. Front Pharmacol, 2020, 11: 570698. DOI:10.3389/fphar.2020.570698
[18] Al-Kuraishy HM, Al-Gareeb AI, Qusti S, et al. Covid-19-induced dysautonomia: a menace of sympathetic storm[J]. ASN Neuro, 2021, 13: 17590914211057635. DOI:10.1177/17590914211057635
[19] Wang J, Li Q, Yin Y, et al. Excessive neutrophils and neutrophil extracellular traps in COVID-19[J]. Front Immunol, 2020, 18;11: 2063. DOI: 10.3389/fimmu.2020.02063.
[20] Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series[J]. Ann Intern Med, 2020, 173(5): 350-361. DOI:10.7326/M20-2566
[21] Hisada Y, Grover SP, Maqsood A, et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors[J]. Haematologica, 2020, 105(1): 218-225. DOI:10.3324/haematol.2019.217083
[22] Laridan E, Martinod K, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis[J]. Semin Thromb Hemost, 2019, 45(1): 86-93. DOI:10.1055/s-0038-1677040
[23] Sarıalioğlu F. Pulmonary intravascular coagulation in COVID-19:possible pathogenesis and recommendations on anticoagulant/thrombolytic therapy[J]. J Thromb Thrombolysis, 2020, 50(2): 278-280. DOI:10.1007/s11239-020-02129-0
[24] Al-Kuraishy HM, Al-Gareeb AI. Acute kidney injury and COVID-19[J]. Egypt J Intern Med, 2021, 33(1): 34. DOI:10.1186/s43162-021-00064-x
[25] Conway EM. Complement-coagulation connections[J]. Blood Coagul Fibrinolysis, 2018, 29(3): 243-251. DOI:10.1097/MBC.0000000000000720
[26] Risitano AM, Mastellos DC, Huber-Lang M, et al. Complement as a target in COVID-19?[J]. Nat Rev Immunol, 2020, 20(6): 343-344. DOI:10.1038/s41577-020-0320-7
[27] Oehmcke S, Mörgelin M, Herwald H. Activation of the human contact system on neutrophil extracellular traps[J]. J Innat Immun, 2009, 1(3): 225-230. DOI:10.1159/000203700
[28] Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases[J]. Nat Med, 2010, 16(8): 887-896. DOI:10.1038/nm.2184
[29] Gould TJ, Vu TT, Swystun LL, et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms[J]. Arterioscler Thromb Vasc Biol, 2014, 34(9): 1977-1984. DOI:10.1161/ATVBAHA.114.304114
[30] Kraakman MJ, Lee MK, Al-Sharea A, et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes[J]. J Clin Invest, 2017, 127(6): 2133-2147. DOI:10.1172/JCI92450
[31] Aldabbous L, Abdul-Salam V, McKinnon T, et al. Neutrophil extracellular traps promote angiogenesis: evidence from vascular pathology in pulmonary hypertension[J]. Arterioscler Thromb Vasc Biol, 2016, 36(10): 2078-2087. DOI:10.1161/ATVBAHA.116.307634
[32] Al-Kuraishy HM, Al-Gareeb AI. Effect of orlistat alone or in combination with Garcinia cambogia on visceral adiposity index in obese patients[J]. J Intercult Ethnopharmacol, 2016, 5(4): 408-414. DOI:10.5455/jice.20160815080732
[33] Robert A, Campbell, Cody M, et al. Placental HTRA1 protease cleaves alpha-1-antitrypsin and generates neonatal NET-inhibitory factor[J]. Blood, 2018, 132: 273. DOI:10.1182/blood-2018-99-111195
[34] Tahamtan A, Besteman S, Samadizadeh S, et al. Neutrophils in respiratory syncytial virus infection: from harmful effects to therapeutic opportunities[J]. Br J Pharmacol, 2021, 178(3): 515-530. DOI:10.1111/bph.15318
[35] Shishikura K, Horiuchi T, Sakata N, et al. Prostaglandin E2 inhibits neutrophil extracellular trap formation through production of cyclic AMP[J]. Br J Pharmacol, 2016, 173(2): 319-331. DOI:10.1111/bph.13373
[36] Kondoh Y, Azuma A, Inoue Y, et al. Thrombomodulin Alfa for acute exacerbation of idiopathic pulmonary fibrosis. A randomized, double-blind placebo-controlled trial[J]. Am J Respir Crit Care Med, 2020, 201(9): 1110-1119. DOI:10.1164/rccm.201909-1818OC
[37] Shrestha B, Ito T, Kakuuchi M, et al. Recombinant thrombomodulin suppresses histone-induced neutrophil extracellular trap formation[J]. Front Immunol, 2019, 10: 2535. DOI:10.3389/fimmu.2019.02535
[38] Healy LD, Puy C, Fernández JA, et al. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo[J]. J Biol Chem, 2017, 292(21): 8616-8629. DOI:10.1074/jbc.M116.768309
[39] Griffin JH, Lyden P. COVID-19 hypothesis: activated protein C for therapy of virus-induced pathologic thromboinflammation[J]. Res Pract Thromb Haemost, 2020, 4(4): 506-509. DOI:10.1002/rth2.12362
[40] Nath Y, Paudel. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling[J]. Eur J Pharmacol, 2019, 858: 172487. DOI:10.1016/j.ejphar.2019.172487
[41] Entezari M, Javdan M, Antoine DJ, et al. Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury[J]. Redox Biol, 2014, 2: 314-322. DOI:10.1016/j.redox.2014.01.013
[42] Stroo I, Yang J, Anas AA, et al. Human plasma-derived C1 esterase inhibitor concentrate has limited effect on house dust mite-induced allergic lung inflammation in mice[J]. PLoS One, 2017, 12(10): e0186652. DOI:10.1371/journal.pone.0186652
[43] Thomson TM, Toscano-Guerra E, Casis E, et al. C1 esterase inhibitor and the contact system in COVID-19[J]. Br J Haematol, 2020, 190(4): 520-524. DOI:10.1111/bjh.16938
[44] Perdomo J, Leung HHL, Ahmadi Z, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia[J]. Nat Commun, 2019, 10(1): 1322. DOI:10.1038/s41467-019-09160-7
[45] White D, MacDonald S, Bull T, et al. Heparin resistance in COVID-19 patients in the intensive care unit[J]. J Thromb Thrombolysis, 2020, 50(2): 287-291. DOI:10.1007/s11239-020-02145-0
[46] Wang XY, Sun SL, Duan ZH, et al. Protective effect of ethyl pyruvate on gut barrier function through regulations of ROS-related NETs formation during sepsis[J]. Mol Immunol, 2021, 132: 108-116. DOI:10.1016/j.molimm.2021.01.012
[47] Al-Kuraishy HM, Hussien NR, Al-Naimi MS, et al. Is ivermectin-azithromycin combination the next step for COVID-19?[J]. Biomed Biotech Res J, 2020, 4(5): 101.
[48] Alqahtani Z, Jamali F. Clinical outcomes of aspirin interaction with other non-steroidal anti-inflammatory drugs: a systematic review[J]. J Pharm Pharm Sci, 2018, 21(1s): 29854. DOI:10.18433/jpps29854
[49] Becattini C, Agnelli G. Aspirin for prevention and treatment of venous thromboembolism[J]. Blood Rev, 2014, 28(3): 103-108. DOI:10.1016/j.blre.2014.03.003
[50] Chow JH, Khanna AK, Kethireddy S, et al. Aspirin use is associated with decreased mechanical ventilation, intensive care unit admission, and In-hospital mortality in hospitalized patients with coronavirus disease 2019[J]. Anesth Analg, 2021, 132(4): 930-941. DOI:10.1213/ANE.0000000000005292
[51] Iwata K, Doi A, Ohji G, et al. Effect of neutrophil elastase inhibitor (sivelestat sodium) in the treatment of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): a systematic review and meta-analysis[J]. Intern Med, 2010, 49(22): 2423-2432. DOI:10.2169/internalmedicine.49.4010
[52] Sakashita A, Nishimura Y, Nishiuma T, et al. Neutrophil elastase inhibitor (sivelestat) attenuates subsequent ventilator-induced lung injury in mice[J]. Eur J Pharmacol, 2007, 571(1): 62-71. DOI:10.1016/j.ejphar.2007.05.053
[53] Kosgodage US, Trindade RP, Thompson PR, et al. Chloramidine/bisindolylmaleimide-I-mediated inhibition of exosome and microvesicle release and enhanced efficacy of cancer chemotherapy[J]. Int J Mol Sci, 2017, 18(5): 1007. DOI:10.3390/ijms18051007
[54] Gupta AK, Giaglis S, Hasler P, et al. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A[J]. PLoS One, 2014, 9(5): e97088. DOI:10.1371/journal.pone.0097088
[55] Ostafin M, Pruchniak MP, Ciepiela O, et al. Different procedures of diphenyleneiodonium chloride addition affect neutrophil extracellular trap formation[J]. Anal Biochem, 2016, 509: 60-66. DOI:10.1016/j.ab.2016.05.003
[56] Wang HT, Li T, Chen S, et al. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin[J]. Arthritis Rheumatol, 2015, 67(12): 3190-3200. DOI:10.1002/art.39296
[57] Chen YF, Traore YL, Yang S, et al. Implant delivering hydroxychloroquine attenuates vaginal T lymphocyte activation and inflammation[J]. J Control Release, 2018, 277: 102-113. DOI:10.1016/j.jconrel.2018.03.010
[58] Le Joncour A, Martos R, Loyau S, et al. Critical role of neutrophil extracellular traps (NETs) in patients with Behcet's disease[J]. Ann Rheum Dis, 2019, 78(9): 1274-1282. DOI:10.1136/annrheumdis-2018-214335
[59] Buondonno I, Rovera G, Sassi F, et al. Vitamin D and immunomodulation in early rheumatoid arthritis: a randomized double-blind placebo-controlled study[J]. PLoS One, 2017, 12(6): e0178463. DOI:10.1371/journal.pone.0178463
[60] Schauer C, Janko C, Munoz LE, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines[J]. Nat Med, 2014, 20(5): 511-517. DOI:10.1038/nm.3547